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Rising Incidence Rates of BC in Premenopausal Women
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Shuia Xu

Original Investigation | Public Health

January 26, 2024

Breast Cancer Incidence Among US Women Aged 20 to 49
Years by Race, Stage, and Hormone Receptor Status

Shuai Xu, MPH'; Sara Murtagh, MD2; Yunan Han, MD'; Fei Wan, PhD'; Adetunji T. Toriola, MD, PhD, MPH!
» Author Affliations | Article Information

JAMA Netw Open. dai10. 202353331
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Trends in Premenopausal Breast Cancer Incidence by HR Status
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Opportunities for Breast Cancer Prevention

1. Learn from the divergence in ER+ve tumors vs. ER-ve tumors.
2. Early-life factors and breast cancer risk later in life
»  Early-life adiposity

3. Apply genomic approaches to identify new targetable pathways and
repurpose existing medications for prevention
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Lessons from the Divergence in Trends by HR Status

1. Physical activity

» Stronger for ER-ve tumors and in premenopausal women than for ER+ve
tumors - Wu Y et al. BCRT 2013

2. High vegetable intake

» Inverse for ER-ve tumors but not ER+ve tumors - Jung S et al. INCI 2013

3. Reproductive factors
» More relevant for ER+ve tumors
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Early-Life Adiposity and Breast Cancer Risk
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Early-Life Adiposity and MBD

CANCER PREVENTION RESEARCH | RESEARCH ARTICLE

Cancer
Prevention
Research

Research Article

Adiposity Change Over the Life Course and
Mammographic Breast Density in Postmenopausal

Adiposity at Age 10 and Mammographic

Density among Premenopausal Women ® Women
Aliya Alimujiang’, Kellie R. Imm', Catherine M. Appleton?, |y Yunan Han'?, Catherine S. Berkey?, Cheryl R. Herman?, CathenneM Appleton?,
Graham A. Colditz', Catherine S. Berkey®, and Adetunji T. Toriola' Aliya Ahmunang Graham A. Colditz", and Adetunji T. Toriola"*
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Early-Life Adiposity and BC — Direct Effect

JNCIJ Natl Cancer Inst (2020) 00(0): djaa169

doi: 10.1093/jnci/djaa169

First published online 2 November 2020
OXFORD Article

Early-Life Body Adiposity and the Breast Tumor Transcriptome

Jun Wang (@, PhD,"** Cheng Peng (%), ScD,? Catherine Guranich, BS,* Yujing J. Heng, PhD,>®
Gabrielle M. Baker, MD,® Christopher A. Rubadue, MD,” Kimberly Glass, PhD,? A. Heather Eliassen (&), ScD,*’
Rulla M. Tamimi, ScD,*’® Kornelia Polyak (), MD, PhD,%!° Susan Hankinson, ScD?*

OXFORD

JNCIJ Natl Cancer Inst (2020) 00(0): djaal73

doi: 10.1093/jnci/djaal73
First published online 2 November 2020
Editorial

Refining the Focus on Early Life and Adolescent Pathways to Prevent

Breast Cancer

Graham A. Colditz (), MD, DrPH,"** Adetunji T. Toriola (), MD, PhD"?

*Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA and and *Alvin J. Siteman Cancer Center,
Bames-Jewish Hespital and Washington University School of Medicine, St Louis, MO, USA

“Correspondence to: Graham A. Colditz, MD, DrPH, Division of Public Health Sciences, Dep of Surgery, i University School of Medicine, 660 South
Euclid Avenue, Campus Box 8100, St Louis, MO, 63110, USA (e-mail: colditzg@wustl.edu).
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Early-Life Adiposity and BC - Indirect Effect
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Early-Life Adiposity and MBD - Direct Effect

Cancer Medicine
RESEARCH ARTICLE e ew WILEY

Changes in adiposity over the life course and gene
expression in postmenopausal women

Yunan Han'® | Graham A. Colditz™* | AdetunjiT. Toriola'*®

Per 10 kg/m® BMI increase
at age 10
Genes" Diff%* 95% CI
Growth factor-related genes
BMP2 =13 —20.0,21.6
IGF-1 -9.6 —29.9,16.6
IGFBP-3 =23 -17.2,15.4
FGF1 25 -5.5,11.1
FGF12 =01 -8.0,8.5
TGFB1 0.4 —-7.8,9.4
RANK pathway-related genes
RANK =75 =19.9,6.7
RANKL -17.2 —30.8, —0.9
TNFRSF13B =11.1 —22.8,24
TNFRSF18 115! -7.1,10.8
OPG —4.2 —15.8,9.1
Sex hormone-related genes
PRL —4.3 —11.5,3.4
PGR 0.3 —11.5,13.7
ESR1 -39 -12.9,6.1
STAT1 103 —3.8,26.6
STATS 37 =52,133
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Lipidomic Profiling of MBD

VPD: Lipid species covariate linear model
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Conclusions

* Understand biological mechanisms driving the
associations of early-life factors with BC and deploy these
early in life

* Apply new technologies to refine biomarker and pathway
identification for targeted prevention

e Equity, equity, equity — diversity in study population
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Senescence-Based Deep Learning Predicts Breast Cancer Risk
Using H&E Core Biopsy Images From Healthy Women

Mark Powell MD MPH! B4
Christopher Benz MD! B> Image

Indra Heckenbach PhD2 ® tissue
Morten Scheibye-Knudsen MD DMSc?
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Cellular senescence: a complex phenotype
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Normal cell

Senescent cell

Characterized by irreversible cell cycle arrest and an inflammatory
senescence-associated secretory phenotype (SASP)

Complex state — can impact cancer risk in both positive and negative ways
Difficult to identify — lacks universal and specific markers

No current way to evaluate role of senescence in large observational studies



Can deep learning detect senescence?

Use known inducers of senescence in tissue culture such as radiation and

drugs and then apply deep learning

Subtle changes in nuclear morphology such as area
and convexity can be utilized to detect senescent
cells from standard H&E image

TECHNICAL REPORT

https://doi.org/10.1038/543587-022-00263-3

OPEN

naure
aging

(W) Check for updates

Nuclear morphology is a deep learning biomarker

of cellular senescence

Indra Heckenbach'?*, Garik V. Mkrtchyan', Michael Ben Ezra', Daniela Bakula', Jakob Sture Madsen ®",
Malte Hasle Nielsen ©%, Denise Or6®, Brenna Osborne ©', Anthony J Covarrubias®’,
M. Laura Idda®®, Myriam Gorospe ©¢, Laust Mortensen*", Eric Verdin?, Rudi Westendorp**® and

Morten Scheibye-Knudsen ©'3%

Cellular senescence is an important factor in aging and many age-related diseases, but understanding its role in health is chal-
Ienglng due to the lack of excluslve or universal markers, Using neural ulwofks, we predict senescence from the nuclear mor-
phology of th up to 95% accuracy, with

approach, the predictor rates of

aml eﬂlynyl-z'-deuxyurldlne (EdU)-negative nuclei in tissues and shows an increasing rate of senescent cells with age In H&E-
tissue and h di | biopsies. medical records reveals that higher rates of senescent cells

correspond to decreased rates of malignant neoplasms and increased rates of ion and

cerebral infarction. In sum, we show that morphological alterations of the nucleus can serve as a deep Ieammg predictor of

applicable across ti species and is associated with health outcomes in humans.

ellular is widely recogni 1 pro-

cess in aging, both as a primary causalfactor in the decline of

tissue homeostasis and as a consequence of other aging pro-
cesses such as inflammation and DNA damage'~". Due to its critical
role in disease etiology, senescence is increasingly recognized as a
target for pharmaceutical intervention'. Senescence also serves as a
biomarker for aging’, possibly providing a more nuanced measure
of age-related health beyond chronological age. However, the role
of senescence in human health is not clearly understood. Senescent
cells present a complex and diverse phenotype, which varies sub-
stantially by cell type and source®”. There is considerable overlap
between molecular factors that associate with senescence, DNA
damage, inflammation and other processes™*, and no single marker

applied to H&E-stained mouse liver and human dermal tissues,
predicting an increase in senescence with age. Using the Danish
National Patient Register, which records all ambulatory and inpa-
tient contacts with Danish hospitals, we investigated how predicted
senescence relates to human disease. In our study of 169 individu-
als, we found a significant inverse relationship between malignant
neoplasm incidence and predicted senescent cells, which fits the
hypothesis that senescence is a mechanism to limit cancer'™"",
Although oncogenic events are associated with the formation of
senescent cells”, we speculate that individuals with higher propen-
sity toward developing senescent cells have reduced formation of
‘malignant neoplasm and are at lower risk of cancer. We also found
‘weaker associations between predicted senescence and other condi-

reliably and consistently identifies senescence'™.
senescent cells often exhibit an altered morphology, mcludmg
expanded nuclei**, making senescence amenable to analysis with
computer vision and machine learning methods".

tions, including osteoporosis, osteoarthritis, hypertension, cerebral
infarction, hyperlipidemia, hypercholesteremia, hearing loss, dys-
pnea and sciatica.

3 models: IR (radiation), RS (replicative senescence), and AAD (drug
induced by antimycin, atazanavir-ritonavir, doxorubicin) applied to
4 breast tissues: adipose, stroma, TDLU and non-TDLU epithelium




Normal breast tissue from the Komen Tissue Bank
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« KTB provides H&E-stained images from entry biopsy with associated data

« 4382 individuals with no prior history of breast disease enrolled 2009-
2019 and followed through May 2024

* Median age 45, 69% NH White, 18% NH Black, 9% Hispanic, 4% Asian

* 99 breast cancer cases diagnosed on average 4.8 years after biopsy, 13
additional cases and detailed path reports since initial publication



Senescence scores are associated with breast cancer risk

Odds Ratio 95% CI P value

IR/adipose - :i . | 1.46 0.96 — 2.20 0.08
IR/epithelial - | : . l 1.31 0.87 - 1.96 0.20
IR/stroma - 1 . | 1.59 1.05 — 2.40 0.03
IR/TDLU - | i o | 1.16 0.77 - 1.74 0.47

I

|
v  RS/adipose - | : . | 1.27 0.85 — 1.90 0.25
.é RS/epithelial 1 | i . | 1.39 0.93 - 2.09 0.11
S RS/stroma - : . | 1.50 1.00 - 2.26 0.05
= RS/TDLU - . | 1.20 0.80 — 1.80 0.37

|
AAD/adipose A — | i 0.60 0.39 - 0.91 0.02
AAD/epithelial — : | 0.88 0.59 — 1.33 0.55
AAD/stroma - — : | 0.74 0.49 — 1.11 0.14
AAD/TDLU A | . ! 0.97 0.64 — 1.46 0.88

|

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Odds Ratio

All analyses are adjusted for age, race/ethnicity, age menarche, parity, family history, BMI, alcohol and tobacco use



Senescence scores add to predictive value of Gail model

Neither - | Odds Ratio 95% CI P value
|

AAD fat only - | i o | 1.64  0.76-3.53  0.21

Gail only - EI o | 215  1.04-4.47  0.04
Both - i | o | 390 1.99-7.64 0.0001

0 1 2 3 4 5 6 7
Odds Ratio

Neither - Odds Ratio 95% CI P value

IR stroma only - | . | 1.30 0.62 - 2.75 0.48

' 2.10 1.08 - 4.07 0.03

Gail only -

Both - | o | 3.09 1.62-5.91 0.0006

'—l————————————

0
Odds Ratio

Gail scores are based on age, race/ethnicity, age at first birth, age of menarche, family history in first degree relative, and
history of prior breast biopsies



Senescence scores are associated with risk of DCIS (n = 36)

Odds Ratio 95% CI P value
|
IR/adipose - H— | 160 0.78-3.28  0.20
|
IR/epithelial - | . I 1.01 0.50 — 2.01 0.98
IR/stroma - | : . | 1.35 0.67 - 2.73 0.40
|
IR/TDLU - e | 1.34  0.67 —2.68 0.41
|
|
|
|
v  RS/adipose - I: . I 1.84  0.90-3.78 0.10
>
.é RS/epithelial - —— | 138 0.68-274  0.37
~ |
S RS/stroma A P o : 318 1.43-7.09  0.005
Q I
= RS/TDLU - e l 124  0.62-2.48 0.54
|
|
|
AAD/adipose { F=—! 0.43  0.20 - 0.91 0.03
|
AAD/epithelial { ~ F—= | 1.03  0.51-2.05 0.93
|
AAD/stroma {4 F——+ 0.60 0.30-1.24 0.17
|
AAD/TDLU { |——— 0.64 0.31-1.32 0.23
|
0 1 2 3 4 5 6 7

Odds Ratio



Senescence scores combined with Gail scores for DCIS

Neither -

Gailonly 1 |
AAD fat only A

Both -

0

Neither -
Gail only -
RS stroma only -

Both A

10

0

4 6
Odds Ratio
L 4

4 6

Odds Ratio

10

12

12

Odds Ratio 95% CI P value

1.77 0.42-7.43 0.43
2.75 0.73-10.4 0.14

5.1 1.47 -17.7 0.01

Odds Ratio 95% CI P value

1.76 042-739 0.44
2.83 0.75-10.7 0.13

5.26 1.52-18.3 0.009



Conclusions and Future Directions

 Senescence scores generated by deep learning models may be a new
biomarker for predicting breast cancer risk

« Use in predicting future risk of invasive cancer in women with BBD looks
promising especially in high-risk women with proliferative changes

 The scores may represent ability of a woman’s breast tissue to resist the
development of breast cancer

 Potential applications may exist for predicting prognosis in women with
DCIS or early-stage invasive cancer

« Can be added to traditional risk factors and have been shown to increase
predictive value when added to MIRAlI mammography algorithm
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Stromal Inflammation as a Driver of Parity-related

Breast Cancer Etiologic Heterogeneity
Implications for Precision Prevention in a Sub-Saharan
African Population

Mustapha Abubakar, M.D., Ph.D.

Earl Stadtman Investigator

NIH Distinguished Scholar (2022)

Integrative Tumor Epidemiology Branch (ITEB)
Division of Cancer Epidemiology and Genetics



Background: Breast cancer in Sub-Saharan Africa

= Aleading cause of cancer-related morbidity
and mortality o sz

= Disproportionately high mortality rates:

* Late stage at presentation

* Limited access to screening, diagnostic and
treatment services

* Manpower shortages

* Aggressive tumor biology

o Younger age Middie Afica
O Fa m i l.y h i StO ry Estimatedioge-stand‘:?dised ratif(mrld)?:ir 1000;000
o Multiparity

Bl Incidence
B Mortality

Brewster et al, Lancet. 2014



Higher parity rates in parallel with higher proportions of
aggressive breast tumor phenotypes among sub-
Saharan African women

Global Fertility Rates by Region
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Complex relationship of parity and breast cancer risk

= Varies by ER status

e Reducedrisk for ER+
* |ncreased risk for ER-/basal-like

fold-change
relative to median
-3-2-10123
[

PAROUS | NULLIPAROUS
”Hﬂ ||| IH

= Attenuating effect of
breastfeeding (ER-)

= Underlying mechanisms?

 Aberrant lobular involution
e Chronic inflammation

Upregulation of genes in immune, inflammation and
wound response pathways in parous breast tissues.

Rotuno et al, BCR. 2017

Millikan et al, BCRT. 2008; Palmer et al, CEBP. 2011; Figueroa et al, 1JC. 2020; Jung et al, JNCI. 2022



Aim

To investigate the associations between parity-related
factors and risk of breast cancer subtypes defined by degree

of stromal inflammation, overall and by tumor estrogen
receptor (ER) status



Study population: Ghana Breast Health
Study (GBHS)

= Population-based case-control study
(2013-2015)

= Cases (invasive breast cancer patients)

= Population controls recruited from
Ashanti, Central, Eastern, and Greater
Accra Regions

= Current analysis: 790 cases and 2,095
controls

Nyante et al, PLOS ONE. 2019



Exposures

= Detailed questionnaire-based risk factors
(demographic, lifestyle, and environmental
factors)

= Exposures of interest: parity (nulliparous,
parous), number of children, breastfeeding
duration, time since last childbirth, joint
parity/breastfeeding

= Other exposures: age at menarche, body
size, menopausal status, family history, etc.
Brinton et al, |JC. 2017; Figueroa et al, |JC. 2020



Characterizing stromal inflammation on
standard H&E images using machine learning

= Excellent agreement
with two pathologists
(r=0.75-0.93 for intra-
tumoral & peri-tumoral
stromal cellularity)

= Stromal cellular density
= % of stroma area
occupied by nucleated
stromal cells

Abubakar et al, CEBP. 2024



Defining low-grade and high-grade stromal
inflammation-based subtypes of breast cancer

Low-grade stromal inflammation (LGSI) High-grade stromal inflammation (HGSI)
<30% =230%

Park et al, Ann Oncol. 2019; Loi et al, JCO. 2019



Analytical approach

= Associations of parity-related factors with risk of inflammation-
based breast cancer subtypes

Low-grade stromal High-grade stromal
inflammation (LGSI) inflammation (HGSI)

= Overall (ER+/ER-)
= =50 years (ER+/ER-)
= >50 years (ER+/ER-)



Results 1: Associations of parity-related factors with
risk of inflammation-based breast cancer subtypes

e Qverall
* By ER status

Low-grade stromal High-grade stromal
inflammation (LGSI) inflammation (HGSI)



Frequencies of parity-related variables differed
by inflammation-based subtypes

Characteristic : Low-grad.e High-grac!e
. Inflammation Inflammation ¢
n=394 n=395 P-value
-Farlty - e
Nulliparous 45 (11.4) 25 (6.3)
Parous 348 (88.6) 369 (93.7) 0.01
Number of children
Nulliparous 45 (11.5) 25 (6.3)
1-2 98 (24.9) 115(29.2)
3-4 140 (35.6) 118 (30.0)
=5 110 (28.0) 136 (34.5) 0.009
Breastfeeding, months
<13 129 (34.3) 110 (29.5)
13-18 203 (54.0) 211 (56.6)
=219 44 (11.7) 52(13.9) 0.31
Joint parity/breastfeeding (months)
Nulliparous 45 (12.0) 25 (6.7)
Parous/<13 84 (22.3) 85 (22.8)
Parous/13-18 203 (54.0) 211 (56.6)
Parous/=19 44 (11.7) 52(13.9) 0.08
Parity/time since last birth, years
Nullparous 45 (12.6) 25(6.9)
Parous/<10 118(32.9) 111 (30.6)
Parous/>10 195 (54.5) 227 (62.5) 0.01
Family history
None 371 (95.4) 352 (90.5)
Yes 18 (4.6) 37 (9.5) 0.008




Case-control analysis revealed etiologic heterogeneity of
inflammation-based subtypes by parity

OR (95% ClI)
0.5 1| 2 3 P het

Parity :
Nulliparous \ é /

Parous - —I—-
Reduced risk — 0.003 Increased risk
Childbirths
None - ¢
1-2 - —a—
: —e— 0.003
3-4 - \—-— 0.04
254 ——W— / )
Low-grade stromal "_’_ 0.001 High-grade stromal
inflammation (LGSI)  Parity/Breastfeed- inflammation (HGSI)
Nulliparous - ®
Parous/<13mos - —I—-— /

—e—  0.07
Parous/13-18mos \ _-_.
——
Parous/z19mos | ——l—— 0002
—
: 0.003

Parity/Time LB :
Nulliparous - @
Parous/<10 - \ — = /
—— 0.02

Parous/>10 - ——
“——  0.007




Inflammation-based subtyping refines parity-related

etiologic heterogeneity by estrogen receptor status

Nulliparous -

Parous -

Low-grade stromal
inflammation (LGSI)

High-grade stromal
inflammation (HGSI)

Childbirths -
None

1-2 1

3-4+

251
Parity/Breastfeed
Nulliparous
Parous/<13mos -
Parous/13-18mos
Parous/219mos
Parity/Time LB+
Nulliparous -

Parous/<10

Parous/>10

OR (95% CI)
05 1 5 10 20 P het
i
R
. ——  <0.007
e 0.007
N e 0004
——  0.001
_.é 0.007
——
N\ e <0.001
+ E
——  <0.001
N _:/_ 0.007
—-—
<0.001

Parity 1
Nulliparous

Parous

Childbirths

None

1-2 1

3-4

25
Parity/Breastfeed
Nulliparous
Parous/<13mos -
Parous/13-18mos -
Parous/219mos
Parity/Time LB
Nulliparous

Parous/<10

Parous/>10

OR (95% Cl)

0.5 1 2 34

P het

0.177

0.08
0.62
0.03

0.74
0.177
0.715

0.49
0.04



Persistence of parity-associated etiologic heterogeneity by
inflammation-based subtypes of Triple Negative breast cancer

OR (95% Cl)
05 1 10 20 40 P het
Parous I E I I I

Nulliparous \ ¢
Parous - —— /

Reduced risk : * 0.007 Increased risk

Childbirths

vone | N 4 _

124 —m—

E | 4
4] 0.004
Low-grade stromal ol ¢ 0.02 High-grade stromal
inflammation (LGSI) ¢ 0.006 inflammation (HGSI)
Breastfeed I
<13mMos 0
>13mos — 0. 1 1

Parity/TSLB \ :
Nulliparous ¢

Parous/<10- + ._/ 0.03

Parous/>10q1 —l—
. 0.001




Results 2: Associations of parity-related factors with
risk of inflammation-based breast cancer subtypes

* Among women <50 years
* By ER status

Low-grade stromal High-grade stromal
inflammation (LGSI) inflammation (HGSI)



The protective effect of parity-related factors for low-grade stromal
inflammation subtype was attenuated among women =50 years

Low-grade stromal
inflammation (LGSI)

OR (95% ClI)
1 > 3 Phet
Parity : : :
Nulliparous é
Parous - —.—
— 0.57
Childbirths
None ,
1-24 —_——
PN 0.37
3-4 .
' g 0.98
>5 - = i
g 0.39
Parity/Breastfeed
Nulliparous ,
Parous/<13mos - . . 0 44
Parous/13-18mos _._
— 0.57
Parity/Time LB
Nulliparous .
P /<10 N " EE—
arous . 0 5 1
Parous/>10 0
4 0.39

High-grade stromal
inflammation (HGSI)



Etiologic heterogeneity of inflammation-based subtypes by
parity status for ER+ but not ER- early onset tumors

OR (95% Cl) OR (95% Cl)
0.5 1 10 20 40 P het o5 1 2 4 8 Phet
Parity - I I — Parity
Nulliparous ¢ Nulliparous 6

Parous — Parous : i
: o 0.02 ; ¢ 0.68
Childbirths - E Childbirths i
None 6 None - ?
124 —m— 1-2- —
g 0.03 o 0.91
341 —m— ’ 3-4+ =
e e ; 0.02 g 0.41
251 ——H— 251 il
Low-grade stromal : ¢ 0.04 — 0.94
inflammation (LGSI) Parity/Breastfeed - Parity/Breastfeed ]
Nulliparous 9 Nulliparous 9
Parous/<13mos — Parous/<13mos - i
’ A 0.09 o 0.86
Parous/13-18mos —I—-— Parous/13-18mos =
J— 0.07 N 0.46
) Parity/Time LB - Parity/Time LB :
ngh-gl’ade stromal Nulliparous é Nulliparous ¢
) ) p /<10 —— Parous/<10 —
inflammation (HGSI) e N 0.001 5 0.82
Parous/>10 —I—-— Parous/>10 I
o <0.001 o 0.87



Results 3: Associations of parity-related factors with
risk of inflammation-based breast cancer subtypes

* Among women >50 years
* By ER status

Low-grade stromal High-grade stromal
inflammation (LGSI) inflammation (HGSI)



Parity-related factors and risk of inflammation-based subtypes

among women >50 years of age

Reduced risk

Low-grade stromal
inflammation (LGSI)

OR (95% CI)

05 1 2 4 P het

Parity -

Nulliparous - \ é

Parous{ —@—— ' /

¢ 0.001

Childbirths -

None ¢
TINGTT L 0.001

344 —m— i
— 0.006

25 —— E
@ <0.001

Parity/Breastfeed

Nulliparous - ¢

Parous/<13mos —— /

— e " 0.007

Parous/13-18mos-{ ———
—fe—  <0.001

Parity/Time LB

Nulliparous ¢
Parous/<10 \—I— / 0.008

—— .

Parous/>10q ———

e 0.001

Increased risk

High-grade stromal
inflammation (HGSI)



Etiologic heterogeneity of inflammation-based subtypes by
parity status for late-onset tumors, irrespective of ER status

OR (95% CI) OR (95% Cl)
0.5 1 5 10 20 P het o5 1 2 5 Phet
Parity - I I — Parity - I I I I

Nulliparous ¢ Nulliparous é
Parous| —— Parous{ ——@——

— 0.01 » 0.02
Childbirths - Childbirths -
None - ¢ None - ¢
1-24 —@— 1-24 ——W—

; 0.008 g 0.01
3-44 —W— | 341 —W— i

st ; 0.02 . 0.17
254 —— ' 25 —W—— '

Low-grade stromal : 0.009 ; 0.006
inflammation (LGSI) | i _ i
Parity/Breastfeed : Parity/Breastfeed :
Nulliparous - 9 Nulliparous 0
Parous/<13mos - —— Parous/<13mos —

g 0.07 R 0.05
Parous/13-18mos-| —l— Parous/13-18mos-{ ——@—-

g 0.01 ‘4 0.03
. Parity/Time LB I Parity/Time LB -
ngh'grade stromal Nulliparous - ¢ Nulliparous ¢

inﬂammation (HGSI) Parous/<10 + 0 01 Parous/<10 - —I—‘ 0 34
Parous/>10q1 —— E Parous/>104 —@—

0.006 * 0.02




Summary

= The findings highlight the contribution of stromal inflammation to driving
parity-related breast cancer etiologic heterogeneity

=  Contrary to the sole focus on ER status with respect to parity-related
breast cancer etiologic heterogeneity, the degree of stromal

iInflammation is additionally informative for understanding parity-related
breast cancer risk



Conclusions: Implications for breast cancer precision-
prevention among women in Sub-Saharan Africa

Strategy Low-grade Stromal = High-grade Stromal
Inflammation [ Inflammation
ER- ER-
Antenatal education v v v v
Postpartum v v v v
surveillance
Breastfeeding v v — —

SERMs: Selective estrogen receptor modulators
v Possible benefit ~ — May not be beneficial

= Further studies are required to confirm findings
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Introduction

= The immune system plays a complex role in cancer
development

= Cancer immunoediting hypothesis identifies these roles in
three phases:

o Elimination
o Equilibrium
o Escape

@) NATIONAL CANCER INSTITUTE Schreiber, et al. Science 2011



" RS

Non-Proliferative ~ Proliferative Atypical " Ductal Carcinoma
Disease (NPD) D'Sease(‘;vg\t‘v%t atypia Hyperplasia (AH) In Situ (DCIS)

= Current understanding of progression of benign lesions is predicated on
proliferative epithelial changes.

= The role of the immune and stromal landscape within these pre-invasive
stages is not well known.

NATIONAL CANCER INSTITUTE Lynn, C. H., et al. N. England J. M 2005



Hypothesis and Aims

= Immune landscape of premalignant and preinvasive
tissues may reflect distinct pathways of breast cancer
development.

= Mechanisms may reflect either primarily epithelial or
primarily stromal changes.

= Aim:

o Characterize the immune landscape of premalignant
tissues which showcase disparate degrees of epithelial
and stromal changes.

@) NATIONAL CANCER INSTITUTE



The Breast Radiology Evaluation And Study of Tissues (BREAST)
Stamp Project

Kaiser Permanente Statistical Coordinating Center Vermont Breast
WA Registry Metro Chicago Breast | . cer syrveillance

Cancer Registry

Enroll Women referred to diagnostic image-guided
breast biopsy due to abnormal mammogram

/ N (n=1,227)

San Francisco

New Hampshire
Mammography\- Mammograph: . . . .
Registry NARGE Collect Risk factor data, biologic specimens (blood,
(1994-2010 with partial data .
/ &onemammmzom) buccal cells, breast tissues)
Colorado Mammography
Advocacy Project 7 Carolina Mammography
s Mamxf)wrzﬂe:l(;ro'ecl Ragetty
(19562010, Stamp Act Fund [
Breast Cancer Surveillance
Consortium —

Consent for 10-year follow up: Registry linkage 2022

Gierach GL, et al. Cancer Prev Res 2015



Analytic Population / Demographics

= \We characterized breast biopsy tissues from 99 women
participating in the BREAST Stamp Project

Age (years) Analytic Population (N = 99)
Mean 50.80
Race N(%)
White, non Hispanic 96 (97)
Other 3(3)
BMI
<= 25 68 (69)

> 25 31 (31)

@) NATIONAL CANCER INSTITUTE



Methodology: Classification of Epithelial Changes

= Pathologists defined histologic subtypes of epithelial changes
as follows:

o Non-proliferative disease (NPD, N=24)

o Proliferative disease without atypia (PDWA, N=25)
o Atypical Hyperplasia (AH, N=26)

o Ductal Carcinoma In Situ (DCIS, N=24)

@) NATIONAL CANCER INSTITUTE



Methodology: Machine-learning classification of stromal changes

H&E imag Tissue classification Cell detection Stromal disruption

« Machine-learning
defined stromal changes
include changes in

stromal architecture and . i P e 50 RV Y
cell composition Minimal (N=24) Moderate (N=51) Substantial (N=24)

Decreasing ECM

Increasing cellularity
) NATIONAL CANCER INSTITUTE



Methodology: 10 plex immunofluorescence staining of biomarkers

IMMUNE NON-IMMUNE

m) NATIONAL CANCER INSTITUTE
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Results

Epithelial Pathway

Biomarker densities by BBD lesion
severity

10



Varying biomarker densities observed by
epithelial lesion severity for adaptive immune
cell markers

Total Immune Cells Lesion Type CD3 Densities By Lesion Type CD4 Densities By Lesion Type CD8 Densities By Lesion Type
4000 600 1000 40
° : CD8
. Total : CD3 CD4 i
il o 0
6 3000 — ° £ 0 — ° £ 1 — ° £ m — °
2 T k| T
; 5 5 :
o 5 %5 5
] o h o h
z ) £ s . Em
0 I L I
i ° H i ] o
2 2 z 2 o
3 [ 0 0 : ’ ’ [ 0
H 3 3 0 3
£ 100 8 10 o il g 0 2w o o
E [¥] 0 Q [¥]
I ﬁ
: i ? i
0 0 0 0
NPD ] AH DCis NPD PD AH 0eis NPD FD AH 0eis NPD PD AH 0eis
Lesion Severity Lesion Severity Lesion Severity Lesion Severity
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Variation in biomarker densities observed among epithelial
lesions for CD68 and PDL1, but not PD1 and FOXP3

Innate Immunoregulatory Immune Escape

CDE8 Densities By Lesion Type FOPX3 Densities By Lesion Type PD1 Densities By Lesion Type PDL1 Densities By Lesion Type
800 300 kil

D68 . FOXP3 . pD1 PDLI
'« P = 0.0009 . P =0.3206 1= P =0.2228 " P =0.0050

80

=
~
B

£ E
225
p 5
E "E E
E 400 400 g 150 E
g 3 i
z i& z 10 °
g 0 3 v : g
g 20 0 200 A 3
5 B o &7
] i E 0 0 0 i
NPD PO A DCIs NPD D AH Dels NPD D A4 DeIS NPD PD A ocis
Lesion Sevety Lesion Severity Lesion Severity Lesion Severtty
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No clear patterns of biomarker densities by lesion
severity for non-immune markers, CD31 and aSMA

CD31 Densities By Lesion Type aSMA Densities By Lesion Type
1000 500 -

cD31 : aSMA T
«~ P =0.1825

800

: P=0.3129 :
g — ° 2
K= =
1S
§ g
w600 @
‘5 s
< E

g £ 300
g g
_%‘ 400 %‘
= =
S 2

a8 = 200
3] @

200 ?
100
0
DCis DCIs
Lesion Severi ity Lesion Severi ity
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Results

Stromal Pathway

Biomarker densities by stromal
disruption phenotypes

14



Total immune cell density per mm? of stromal area

Significant differences observed in adaptive immune
cell biomarker expression within stromal disruption

phenotypes

Total Immune Cells By Stromal Disruption Phenotype

4000

3000

2000

1000

Total
P <0.0001

T -

Winimal Moderate Substantial run

Stromal Disruption Phenotype

CD3 density per mm?® of stromal area

400

300 -

200

100

CD3 Densities By Stromal Disruption Phenotype

D3 |
P = 0.0322

° )
o
¢
Minimal Moderate Substantial

Stromal Disruption Phenotype

CD4 density per mm? of stromal area

7500

562.5

3750

1875

00

CD4 Densities By Stromal Disruption Phenotype

CD4 .
P =0.0001

.al

Minimal Moderate Substantial

Stromal Disruption Phenotype

CD8 density per mm? of stromal area

CD8 Densities By Stromal Disruption Phenotype

1500

1125

750

375

oo

8
o

CD8
P = 0.0051

-ul

Substantial

Woderate
Stromal Disruption Phenotype

Winimal
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800

Significant differences observed in biomarker densities among
stromal disruption phenotypes for innate immune markers
CD68, FOXP3, and PDL1 but not for PD1

CDE68 Densities By Stromal Disruption Phenotype

Innate

cDe68
P <0.0001

Moderate
Stromal Disruption Phenotype
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Immune Escape
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Significant differences observed in non-immune biomarker
densities within stromal disruption phenotypes

CD31 Densities By Stromal Disruption Phenotype aSMA Densities By Stromal Disruption Phenotype
1000 500 :

CD31 o oSMA
= P < 0.0001 P =0.0281

400

600

400
200 ; - .
_ 100

Minimal Moderate Substantial Minima Moderate Substantial
Stromal Disruption Phenotype Stromal Disruption Phenotype

300

200

CD31 density per mm* of stromal area
aSMA density per mm? of stromal area
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1.
2.

Results

Epithelial pathway regression model

Stromal disruption regression model
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DCIS is associated with increased immune infiltration
compared to NPD

Epithelial lesion severity (predictors)

Marker (outcome)

CcD3

CcD4

CcD8

CD68

PD1

PDL1

FOXP3

Total Immune Cells
CD31

aSMA

PDWA vs NPD AHvs NPD DCIS vs NPD

B (95% CI) P value B (95% CI) P value B (95% CI) P value P trend
-1.262 (-4.10,1.58) 0.38 -0.224 (-2.98, 2.53) 0.87 4.728 (1.90, 7.56) 0.00 0.001
-2.190 (-5.32,0.94) 0.17 0.031(-3.01,3.07) 0.98 5.160 (2.04, 8.28) 0.00 0.000
-1.121 (-2.85,0.61)  0.20 -0.287 (-1.97,1.40) 0.74 2.050(0.33, 3.77) 0.02 0.004
-1.815(-4.30,0.67) 0.15 0.523(-1.89,2.94) 0.67 4.686 (2.21,7.16) 0.00 <0.0001
-0.588 (-2.87,1.70) 0.61 -0.411 (-2.63,1.81) 0.71 1.776 (-0.50, 4.05) 0.13 0.051
-1.65 (-3.82, 0.52) 0.13 -0.239(-2.35,1.87) 0.82 2.896 (0.734, 5.058) 0.01 0.001
-1.942 (-5.23,1.35) 0.24 0.140(-3.06, 3.34) 0.93 1.327 (-1.95, 4.61) 0.42 0.115
-4.092 (-9.72,1.53) 0.15 -0.084 (-5.55,5.38) 0.98 8.418 (2.81, 14.02) 0.00 0.000
0.408 (-1.96, 2.78) 0.73 0.683(-1.62,2.98) 0.56 0.868 (1.49, 3.23) 047 0.113
0.750 (-1.06, 2.56)  0.41 0.232(-1.53,1.99) 0.79 1.375(-0.43, 3.18) 0.13 0.104

* Adjusted for age, BMI, and biopsy type

@ NATIONAL CANCER INSTITUTE
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Increasing stromal disruption is associated with
Increasing immune infiltration for all markers

Stromal disruption (predictors)

Moderate vs Minimal

Substantial vs Minimal

B (95% CI) P value B (95% CI) P value P trend
Marker (outcome)
CD3 1.630 (-0.80, 4.06) 0.19 3.218 (0.37,6.07) 0.03 0.03
CcD4 2.292 (-0.39, 4.97) 0.09 5.706 (2.56, 8.85) 0.00 0.00
CcD8 1.224 (-0.26, 2.70) 0.10 2.672(0.93, 4.41) 0.00 0.00
CD68 2.307 (0.18, 4.43) 0.03 5.930 (3.44, 8.42) | <0.0001 <0.0001
PD1 1.842(-0.11, 3.80) 0.06 3.331(1.04, 5.63) 0.00 0.00
PDL1 1.862 (0.01, 3.72) 0.05 4.124 (1.95, 6.30) 0.00 0.00
FOXP3 3.212(0.40, 6.02) 0.03 4.90 (1.59, 8.20) 0.00 0.00
Total Immune Cells 6.05(1.24,10.86) 0.01 12.21 (6.56, 17.85)| <0.0001 <0.0001
CD31 2.428 (0.40, 4.45) 0.02 6.033 (3.66, 8.41) | <0.0001 <0.0001
aSMA 1.417 (-0.13, 2.97) 0.07 2.106 (0.28, 3.93) 0.02 0.02

* Adjusted for age, BMI, biopsy type, and lesion severity

m NATIONAL CANCER INSTITUTE
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Conclusion / Implications

Results suggest that diverse immune and non-immune related
mechanisms ‘might’ be operative in premalignant/preinvasive tissues

The degree of epithelial and stromal changes on premalignant breast
biopsies did correlate with disparate immune and non-immune cell
Infiltration phenotypes.

If confirmed, the findings could have implications for the way we
approach breast cancer prevention strategies

Further, larger longitudinal studies are required to understand how
these distinct (epithelial or stromal) immune mechanisms may have
potentially different implications for BC risk and tumor biology.

@) NATIONAL CANCER INSTITUTE
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Risk Assessment for Digital Breast Tomosynthesis to
Identify Women Who Need Additional Care



Disclosures

Patent on "system and method for assesing breast cancer risk using imagery”
with a licence to ICAD medical, Nashua, NH, U.S.

Patent on "compositions and methods for monitoring the treatment of breast
disorders” with a licence to Atossa Therapeutics, Seattle, WA, U.S.



Several clinical uses of breast cancer risk
assessment

/7

* Identify women who could benefit from additional care to improve screening outcomes
> ldentify women at high risk in the short-term. 1-5-year risk assessment

» Women diagnosed with a more aggressive tumor (e.g. symptomatic cancer, late-stage cancer)

» Women may benefit from supplemental screening after being identified in an actionable time-window

/

% ldentify women who could benefit from risk reducing intervention to prevent breast cancer

/7

* Identify women who do not benefit from regularly attending breast cancer screening



Clinically available risk models and reported discriminatory

performances

Women at general risk of breast cancer in a Swedish screening population
(5-year risk)

0.9

0.8

AUC

0.7

0.6 . l I
o

Gail Tyrer-Cuzick Gail + density Tyrer-Cuzick BCSC
+ density



Could image data be used for risk assessment?

s Mammographic density is a well-known risk factor that has been studied over several decades

s Mammographic density has been added to risk models such as Gail, Tyrer-Cuzick, BCSC, and
CanRisk (BOADICEA)

% More mammographic features beyond density could also be associated with risk of breast cancer
% By combining multiple mammographic features, an image-based risk model could be created

% Replication of predictive performance of a model across different population can assure the

clinical value of the model

)
0’0

For short-term risk models, a recent systematic review showed that 20 image-derived Al risk

models now have been developed and evaluated (Hussain et al, 2024)



Risk models have been developed using mammographic
features that includes density and features beyond density

Calcifications / masses,
Mammographic density, left-right breast asymmetry, age left-right breast asymmetry
' B

OPTIONAL: BMI, menopausal status, family history of breast
cancer, hormone replacement therapy, alcohol, tobacco,

polygenic risk score (313 SNPs)



Use of short-term risk assessment in the clinic

Diagnosis

63-year old woman diagnosed in 2021

Courtesy Axel Grawingholt, radiologist, Germany



A risk model for DBT for use in screening in the U.S.

% Approximately 80% of screening units in the U.S. use digital breast
tomosynthesis (DBT)

/7

% We developed and evaluated an image-based risk model for DBT that
assesses the short-term risk of breast cancer

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

CANCER ‘ ‘

A risk model for digital breast tomosynthesis to predict

breast cancer and guide clinical care MAMMOGRAPHY

Mikael Eriksson'#, Stamatia Destounis®, Kamila Czene', Andrew Zeiberg®, Robert Day”,

Emily F. Conant®, Kathy Schilling®, Per Hall"” riSk assessment



Digital Breast Tomosynthesis generates an image stack of 200-300
images in millimeter-thick slices of the breast

X-ray tube rotation arc

In comparison,
digital
mammography
only 4 images

LS Compression board B

< — - Breast
W ccicc
&ﬁ‘ Detector




Al extracts image features from negative
mammograms

A deep learning algorithm based on the convolutional neural networks. Transfer learning
techniques and regularization is also used during model training.

Feature Extraction Information Integration Classification >,

| A e

Deep L ing F k-3D CNN =
P Learning Framewor S Right Breast %
Prediction Target Mass O

L eft Breast

Microcalcifications

Distortion

Asymmetry
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The DBT Al risk model was developed in the U.S.

screening setting

In total, 154,200 women were screened from 2014-2019 at the four U.S.
screening sites using DBT. We performed a nested case-control study including:

Characteristic Healthy, n = 5,173 Cases, n = 805
Age at mammography 57.88 (9.93) 61.11(9.12)
Age >50 (postmenopausal) 3,809 /5173 (74%) 672 /805 (83%)
Age at breast cancer diagnosis - 61.93 (8.86)

Screen detected cancers

677 / 805 (84%)

Site
Boca Raton
Elizabeth Wende Breast Care
Larchmont

Zwanger-Pesiri

523 /5,173 (10%)
452 [ 5173 (8.7%)
1153 /5,173 (22%)

3,045 /5173 (59%)

81/ 805 (10%)
420 / 805 (52%)
227 [ 805 (28%)

77 | 805 (9.6%)

1



Methods — Absolute risk model and final risk evaluation

+ An absolute risk model was developed based on the extracted Al mammographic features, age, breast
cancer incidence rates, and competing mortality rates

*+ Risk model validation was performed in a separate test set
% Discriminatory performance to assess the ability separate future cases from controls
% Model calibration to assess the ability to corresponding number of events as was observed in the cohort

* Risk classification using clinical guidelines to identify women who could be offered supplemental
screening

12



Results on discriminatory performance of DBT Al risk

Subgroups of women Premenopausal Postmenopausal
All women

by DBT vendor (age<50) (age>50)

Validation set (n=1,792) AUC 95% CI AUC 95% ClI AUC 95% CI

Vendors combined 082 0.79-0.85 0.88 0.83-0.92 0.80 0.77-0.84

Hologic 0.88 0.85-0.91 0.93 0.89 - 0.96 0.86 0.82-0.89

Siemens 076 0.69-0.82 0.77 0.64-0.88 0.74 0.66 - 0.81

GE 0.77 0.66-0.86 0.70 0.42-0.92 0.78 0.66 - 0.88



Model calibration of DBT Al risk — a comparison between predicted risks
and observed proportions of breast cancers
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Risk classification of women into five categories from low to very high
risk of breast cancer in 1 year using USPSTF guidelines

A

=
c
[}
€2
=
kS
c
=]
S 1
e
a \
O e
0.12 0.60 1.00
1-year absolute risk
Risk group (risk-cutoff) Women at risk, % Absolute 1-year risk, % Risk ratio
Low (<0.12) 45 0.05 1.0 (ref.)
General (0.12-<0.34) 31 0.20 3.9
Moderate (0.34-<0.6) 11 0.45 8.7
High (0.6-<1.2) 8.6 0.84 16.2
Very high (21.2) 5.4 1.30 25.1



Interestingly, similar risk stratification performances were
seen for women with dense and non-dense breasts

Absolute 1-year

USPSTF risk group (risk-cutoff) Women at risk, % Risk ratio
risk, %

Low mammographic density
Low (<0.12) 46 0.05 1.0 (ref)
General (0.12-<0.34) 30 0.20 3.9
Moderate (0.34-<0.6) 10 0.46 8.8
High (0.6-<1.2) 9.9 0.85 16.3
Very high (21.2) 4.3 1.29 24.8

High mammographic density
Low (<0.12) 43 0.05 1.0 (ref)
General (0.12-<0.34) 32 0.21 4.0
Moderate (0.34-<0.6) 1 0.45 8.7
High (0.6-<1.2) 7.3 0.83 16.0

Very high (21.2) 6.5 1.31 25.3



DBT Al risk stratification results for overall breast
cancer and by breast cancer subtypes

Cancers combined

H [+) 0, o, o
% (95% Cl) Invasiveness % (95% ClI) Stage % (95% ClI)

Women at risk, %
In-situ Invasive (0] | Il or later

USPSTF risk categories (cumulative %)

Very high (5.4) 36 (33-39) 33 (27-40) 37 (33-41) 33 (27-40) 35 (31-39) 53 (41-64)
High (14) 59 (56-62) 59 (52-65) 59 (55-63) 59 (52-65) 58 (53-62) 76 (65-85)
Moderate (25) 73 (70-76) 74 (67-80) 73 (69-76) 74 (67-80) 72 (68-75) 88 (78-94)
General (56) 89 (87-91) 90 (84-93) 89 (86-91) 90 (84-93) 89 (86-91) 97 (90-99)

Low (100) 100 100 100 100 100 100



Conclusion

% The 1-year DBT Al risk model had a good ability to identify women at high risk of breast
cancer in screening

» AUC=0.82 with good calibration

> After one year, 58% of stage 1 and 76% of the stage I+ cancers were diagnosed in the 14% of
women at high-risk at baseline (high-risk defined using USPSTF guidelines).

» Similar risk stratification performances were observed in women with mammographic dense and
non-dense tissue.

» In addition, 45% of the women had low risk of breast cancer (4 times lower than general risk)

*» DBT Al risk has the potential to inform clinical decision on women at high risk of breast
cancer who may need follow-up after a negative screening exam

18
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Risk Prediction and Biomarkers
for Prevention Trials



‘Omics’ Approaches to Identify Pathways

for Prevention

* Adetunji T. Toriola:
ldentifying New
Targetable Pathways for
Breast Cancer Prevention
In Premenopausal
Women

Common pathways linking early life adiposity,
dense breast tissue and breast cancer tissue

Goal: cheap, effective, and specific drugs that
can be used for prevention
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Al iImage analysis for BC risk prediction

« Mark Powell: Senescence-Based Deep Learning
Predicts Breast Cancer Risk Using H&E Core
Biopsy Images From Healthy Women.

» Suleeporn (Yui) Sujichantararat: Predicting Risk of
Future Breast Cancer Based on Screening MR

Features.

FCop

Upsampiing

A deep learning algorithm based on the combination of inception-based convolutional

neural networks and U-Net. Shared feature extractor across views. Transfer learning

techniques and regularization is also used during model training. The Tensorflow

framework is used for model training.

» Mikael Eriksson: Using Digital Breast
Thomosynthesis Images for Short Term (1-5 year) e

Risk Prediction.

Asymmetry



Al Imaging Analysis for Understanding Pre-Malignant
Tissue and Immune Features Associated with BC Risk

= Excellent agreement
with two pathologists
(r=0.75-0.93 for intra-
tumoral & peri-tumoral
stroma)

« Mustapha Abubakar: Stromal Inflammation (Al
on H&E images) as a Driver of Parity-related
Breast Cancer Etiologic Heterogeneity

= Stromal cellular density
=% of stroma area
occupied by nucleated
stromal cells

Abubakar et al, CEBP. 2024

° Vagm| Luhar: Correlation between eprthe“al Methodology.: Machine-learn.i.ng-classiﬁcati?nofstrom:jxlchanges
and stromal changes (Al-on H&E images) in B e T e
premalignant tissue and immune and non-
Immune cell infiltration phenotypes

* Machine-learning
defined stromal changes
include changes in i 3.6
stromal architecture and SR T PO
cell composition i



The New Era of Risk Prediction

 Traditional risk factor-based models provide relatively limited prediction.
 Polygenic risk scores are improving but AUC is still <0.7.

Al is transforming how we solve classification problems: Al image
Interpretation models are hitting AUC >0.8.

« Potential for combining PRS with Al-image based and EHR data for risk
prediction.

Important Considerations

Al has larger amounts of data from NHW individuals. This can affect
accuracy of prediction in other groups.

* Think about the imglementation of Al based risk prediction based on image
data, EHR and PRS in low resource settings (US and abroad) where this
type of data is limited or patchy.

 Patients’ acceptance of the use of Al for their care decision making.
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