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Identifying New Targetable Pathways for

Breast Cancer Prevention in Premenopausal Women 



Rising Incidence Rates of BC in Premenopausal Women

Shuia Xu



Trends in Premenopausal Breast Cancer Incidence by HR Status



Opportunities for Breast Cancer Prevention

1. Learn from the divergence in ER+ve tumors vs. ER-ve tumors.

2. Early-life factors and breast cancer risk later in life

➢ Early-life adiposity

3. Apply genomic approaches to identify new targetable pathways and 

repurpose existing medications for prevention



Lessons from the Divergence in Trends by HR Status

1. Physical activity
➢ Stronger for ER-ve tumors and in premenopausal women than for ER+ve 

tumors - Wu Y et al. BCRT 2013

2. High vegetable intake
➢ Inverse for ER-ve tumors but not ER+ve tumors - Jung S et al. JNCI 2013

3. Reproductive factors 
➢ More relevant for ER+ve tumors 



Early-Life Adiposity and Breast Cancer Risk

Yang et al. BMC Med 2022



Early-Life Adiposity and MBD 



Early-Life Adiposity and BC – Direct Effect



Early-Life Adiposity and BC – Indirect Effect



Early-Life Adiposity and MBD – Direct Effect



Lipidomic Profiling of MBD 

Getz KR

Getz….Toriola.  Breast Cancer Research, 2023 



Conclusions

• Understand biological mechanisms driving the 

associations of early-life factors with BC and deploy these  

early in life

• Apply new technologies to refine biomarker and pathway 

identification for targeted prevention

• Equity, equity, equity – diversity in study population 
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Senescence-Based Deep Learning Predicts Breast Cancer Risk 
Using H&E Core Biopsy Images From Healthy Women

Estimate risk

Image 
tissue

Predict senescence

1 2



Cellular senescence: a complex phenotype

Characterized by irreversible cell cycle arrest and an inflammatory
senescence-associated secretory phenotype (SASP)

Normal cell

damage
SASP

Senescent cell

Complex state – can impact cancer risk in both positive and negative ways

Difficult to identify – lacks universal and specific markers

No current way to evaluate role of senescence in large observational studies 



Can deep learning detect senescence?

Use known inducers of senescence in tissue culture such as radiation and   
drugs and then apply deep learning

Subtle changes in nuclear morphology such as area 
and convexity can be utilized to detect senescent 

cells from standard H&E image

3 models: IR (radiation), RS (replicative senescence), and AAD (drug 
induced by antimycin, atazanavir-ritonavir, doxorubicin) applied to 
4 breast tissues: adipose, stroma, TDLU and non-TDLU epithelium   



Normal breast tissue from the Komen Tissue Bank

• KTB provides H&E-stained images from entry biopsy with associated data 

• 4382 individuals with no prior history of breast disease enrolled 2009-
2019 and followed through May 2024 

• 99 breast cancer cases diagnosed on average 4.8 years after biopsy, 13 
additional cases and detailed path reports since initial publication

• Median age 45, 69% NH White, 18% NH Black, 9% Hispanic, 4% Asian



Senescence scores are associated with breast cancer risk

All analyses are adjusted for age, race/ethnicity, age menarche, parity, family history, BMI, alcohol and tobacco use

Odds Ratio         95% CI            P value

1.46            0.96 – 2.20

1.31            0.87 – 1.96

1.59            1.05 – 2.40

1.16            0.77 – 1.74

1.27            0.85 – 1.90

1.39            0.93 – 2.09

1.50            1.00 – 2.26

1.20            0.80 – 1.80

0.60            0.39 – 0.91

0.88            0.59 – 1.33

0.74            0.49 – 1.11

0.97            0.64 – 1.46

0.08

0.20

0.03

0.47

0.25

0.11

0.05

0.37

0.02

0.55

0.14

0.88



Senescence scores add to predictive value of Gail model 

Gail scores are based on age, race/ethnicity, age at first birth, age of menarche, family history in first degree relative, and 
history of prior breast biopsies

1.64         0.76 – 3.53

2.15         1.04 – 4.47

3.90         1.99 – 7.64

Odds Ratio       95% CI

Odds Ratio      95% CI

1.30         0.62 – 2.75

2.10         1.08 – 4.07

3.09         1.62 – 5.91

P value

P value

0.21

0.04

0.0001

0.48

0.03

0.0006



Senescence scores are associated with risk of DCIS (n = 36)

Odds Ratio      95% CI P value

1.60        0.78 – 3.28

1.01        0.50 – 2.01

1.35        0.67 – 2.73

1.34        0.67 – 2.68

1.84       0.90 – 3.78

1.38       0.68 – 2.74

3.18       1.43 – 7.09

1.24       0.62 – 2.48

0.43       0.20 – 0.91

1.03       0.51 – 2.05

0.60       0.30 – 1.24

0.64       0.31 – 1.32

0.20

0.98

0.40

0.41

0.10

0.37

0.005

0.54

0.03

0.93

0.17

0.23



Senescence scores combined with Gail scores for DCIS

P valueOdds Ratio       95% CI

1.77          0.42 – 7.43

2.75          0.73 – 10.4

5.11          1.47 – 17.7

P valueOdds Ratio     95% CI

1.76         0.42 – 7.39

2.83         0.75 – 10.7

5.26         1.52 – 18.3

0.43

0.14

0.01

0.44

0.13

0.009



Conclusions and Future Directions

• Senescence scores generated by deep learning models may be a new  
biomarker for predicting breast cancer risk 

• Use in predicting future risk of invasive cancer in women with BBD looks
promising especially in high-risk women with proliferative changes

• Potential applications may exist for predicting prognosis in women with
DCIS or early-stage invasive cancer

• Can be added to traditional risk factors and have been shown to increase
predictive value when added to MIRAI mammography algorithm

• The scores may represent ability of a woman’s breast tissue to resist the
development of breast cancer

Thank you!
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Stromal Inflammation as a Driver of Parity-related 
Breast Cancer Etiologic Heterogeneity

Implications for Precision Prevention in a Sub-Saharan 
African Population



Background: Breast cancer in Sub-Saharan Africa 

▪ A leading cause of cancer-related morbidity 
and mortality

 
▪ Disproportionately high mortality rates:

• Late stage at presentation 
• Limited access to screening, diagnostic and 

treatment services 
• Manpower shortages 

Brewster et al, Lancet. 2014

o Younger age
o Family history 
o Multiparity 

• Aggressive tumor biology 



Higher parity rates in parallel with higher proportions of 
aggressive breast tumor phenotypes among sub-
Saharan African women

Avg. 5 children per woman in most of sub-
Saharan Africa 

Lukong et al, BCRT. 2017



Complex relationship of parity and breast cancer risk 

▪ Varies by ER status

▪ Attenuating effect of 
breastfeeding (ER-)

▪ Underlying mechanisms?

• Reduced risk for ER+ 
• Increased risk for ER-/basal-like

• Aberrant lobular involution
• Chronic inflammation Upregulation of genes in immune, inflammation and 

wound response pathways in parous breast tissues.

Rotuno et al, BCR. 2017

Millikan et al, BCRT. 2008; Palmer et al, CEBP. 2011; Figueroa et al, IJC. 2020; Jung et al, JNCI. 2022 



Aim

To investigate the associations between parity-related 
factors and risk of breast cancer subtypes defined by degree 
of stromal inflammation, overall and by tumor estrogen 
receptor (ER) status



Study population: Ghana Breast Health 
Study (GBHS)
 
▪ Population-based case-control study 

(2013-2015) 

▪ Cases (invasive breast cancer patients)

▪  Population controls recruited from 
Ashanti, Central, Eastern, and Greater 
Accra Regions

▪ Current analysis: 790 cases and 2,095 
controls

Nyante et al, PLOS ONE. 2019



Exposures

▪ Detailed questionnaire-based risk factors 
(demographic, lifestyle, and environmental 
factors)

▪ Exposures of interest: parity (nulliparous, 
parous), number of children, breastfeeding 
duration, time since last childbirth, joint 
parity/breastfeeding 

▪ Other exposures: age at menarche, body 
size, menopausal status, family history, etc.  

Brinton et al, IJC. 2017; Figueroa et al, IJC. 2020



Characterizing stromal inflammation on 
standard H&E images using machine learning 

▪ Excellent agreement 
with two pathologists 
(r=0.75-0.93 for intra-
tumoral & peri-tumoral 
stromal cellularity) 

▪ Stromal cellular density 
= % of stroma area 
occupied by nucleated 
stromal cells 

Abubakar et al, CEBP. 2024



Defining low-grade and high-grade stromal 
inflammation-based subtypes of breast cancer 

Low-grade stromal inflammation (LGSI)
<30%

High-grade stromal inflammation (HGSI)
≥30%

Park et al, Ann Oncol. 2019; Loi et al, JCO. 2019



▪ Associations of parity-related factors with risk of inflammation-
based breast cancer subtypes 

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

Analytical approach

▪ Overall (ER+/ER-)
▪ ≤50 years (ER+/ER-)
▪ >50 years (ER+/ER-)



Results 1: Associations of parity-related factors with 
risk of inflammation-based breast cancer subtypes

• Overall 
• By ER status 

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 



Characteristic Low-grade 
Inflammation

High-grade 
Inflammation

n=394 n=395 P-value
Parity

Nulliparous 45 (11.4) 25 (6.3)
Parous 348 (88.6) 369 (93.7) 0.01

Number of children
Nulliparous 45 (11.5) 25 (6.3)

1-2 98 (24.9) 115 (29.2)
3-4 140 (35.6) 118 (30.0)
≥5 110 (28.0) 136 (34.5) 0.009

Breastfeeding, months
<13 129 (34.3) 110 (29.5)

13-18 203 (54.0) 211 (56.6)
≥19 44 (11.7) 52 (13.9) 0.31

Joint parity/breastfeeding (months)
Nulliparous 45 (12.0) 25 (6.7)
Parous/<13 84 (22.3) 85 (22.8)

Parous/13-18 203 (54.0) 211 (56.6)
Parous/≥19 44 (11.7) 52 (13.9) 0.08

Parity/time since last birth, years
Nullparous 45 (12.6) 25 (6.9)
Parous/≤10 118 (32.9) 111 (30.6)
Parous/>10 195 (54.5) 227 (62.5) 0.01

Family history 
None 371 (95.4) 352 (90.5)
Yes 18 (4.6) 37 (9.5) 0.008

Frequencies of parity-related variables differed 
by inflammation-based subtypes 



Reduced risk

Case-control analysis revealed etiologic heterogeneity of 
inflammation-based subtypes by parity

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

OR (95% CI)
P het

0.003

0.003

0.04

0.001

0.01

0.002

0.003

0.02

0.001

Increased risk



Inflammation-based subtyping refines parity-related 
etiologic heterogeneity by estrogen receptor status 

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

OR (95% CI)
P het

<0.001

0.001

0.004

0.001

0.001

<0.001

<0.001

0.001

<0.001

OR (95% CI)
P het

0.17

0.08

0.62

0.03

0.14

0.17

0.15

0.49

0.04

ER+ ER-



Reduced risk

Persistence of parity-associated etiologic heterogeneity by 
inflammation-based subtypes of Triple Negative breast cancer  

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

OR (95% CI)

P het

0.007

0.004

0.02

0.006

0.11

0.03

0.001

Increased risk



Results 2: Associations of parity-related factors with 
risk of inflammation-based breast cancer subtypes

• Among women ≤50 years 
• By ER status 

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 



The protective effect of parity-related factors for low-grade stromal 
inflammation subtype was attenuated among women ≤50 years 

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

OR (95% CI)
P het

0.57

0.37

0.98

0.39

0.44

0.57

0.51

0.39



Etiologic heterogeneity of inflammation-based subtypes by 
parity status for ER+ but not ER- early onset tumors

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

OR (95% CI)
P het

0.02

0.03

0.02

0.04

0.09

0.01

0.001

<0.001

OR (95% CI)
P het

0.68

0.91

0.41

0.94

0.86

0.46

0.82

0.87

ER+ ER-



Results 3: Associations of parity-related factors with 
risk of inflammation-based breast cancer subtypes

• Among women >50 years 
• By ER status 

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 



Parity-related factors and risk of inflammation-based subtypes 
among women >50 years of age 

OR (95% CI)
P het

0.001

0.001

0.006

<0.001

0.007

<0.001

0.008

0.001

Reduced risk

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

Increased risk



Etiologic heterogeneity of inflammation-based subtypes by 
parity status for late-onset tumors, irrespective of ER status

Low-grade stromal 
inflammation (LGSI) 

High-grade stromal 
inflammation (HGSI) 

OR (95% CI)
P het

0.01

0.008

0.02

0.009

0.01

0.01

0.01

0.006

OR (95% CI)
P het

0.02

0.01

0.17

0.006

0.05

0.03

0.34

0.02

ER+ ER-



Summary
▪ The findings highlight the contribution of stromal inflammation to driving 

parity-related breast cancer etiologic heterogeneity 

▪ Contrary to the sole focus on ER status with respect to parity-related 
breast cancer etiologic heterogeneity, the degree of stromal 
inflammation is additionally informative for understanding parity-related 
breast cancer risk



Conclusions: Implications for breast cancer precision-
prevention among women in Sub-Saharan Africa  

Strategy Low-grade Stromal 
Inflammation 

High-grade Stromal 
Inflammation 

ER+ ER- ER+ ER-

Antenatal education ✓ ✓ ✓ ✓

Postpartum 
surveillance 

✓ ✓ ✓ ✓

Breastfeeding ✓ ✓ ― ―

Anti-inflammatory 
agents

― ― ✓ ✓

SERMs ― ― ✓ ―

SERMs: Selective estrogen receptor modulators
                 ✓ Possible benefit         ―  May not be beneficial  

▪ Further studies are required to confirm findings 
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Introduction

▪ The immune system plays a complex role in cancer 

development

▪ Cancer immunoediting hypothesis identifies these roles in 

three phases: 

oElimination

oEquilibrium

oEscape

Schreiber, et al. Science 2011



3

Immune System and Breast Carcinogenesis

▪ Current understanding of progression of benign lesions is predicated on 

proliferative epithelial changes.

▪ The role of the immune and stromal landscape within these pre-invasive 

stages is not well known.

Non-Proliferative
Disease (NPD)

Proliferative
Disease without atypia 

(PDWA)

Atypical 
Hyperplasia (AH)

Ductal Carcinoma 
In Situ (DCIS)

Lynn, C. H., et al. N. England J. M 2005
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Hypothesis and Aims

▪ Immune landscape of premalignant and preinvasive 

tissues may reflect distinct pathways of breast cancer 

development.  

▪ Mechanisms may reflect either primarily epithelial or 

primarily stromal changes.

▪ Aim:

oCharacterize the immune landscape of premalignant 

tissues which showcase disparate degrees of epithelial 

and stromal changes. 



Enroll  Women referred to diagnostic image-guided 
breast biopsy due to abnormal mammogram 
(n=1,227)

Collect  Risk factor data, biologic specimens (blood, 
buccal cells, breast tissues)

Stamp Act Fund 

Consent for 10-year follow up: Registry linkage 2022

Breast Cancer Surveillance 
Consortium

Improve Breast Density Assessment

Area    Volume 

Global    Regional

The Breast Radiology Evaluation And Study of Tissues (BREAST) 
Stamp Project

Gierach GL, et al. Cancer Prev Res 2015



6

Analytic Population / Demographics

▪ We characterized breast biopsy tissues from 99 women 

participating in the BREAST Stamp Project
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Methodology: Classification of Epithelial Changes

▪ Pathologists defined histologic subtypes of epithelial changes 

as follows:

o Non-proliferative disease (NPD, N=24)

o Proliferative disease without atypia (PDWA, N=25)

o Atypical Hyperplasia (AH, N=26)

o Ductal Carcinoma In Situ (DCIS, N=24)
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Methodology: Machine-learning classification of stromal changes

• Machine-learning 

defined stromal changes 

include changes in 

stromal architecture and 

cell composition  Minimal (N=24) Moderate (N=51) Substantial (N=24)

Decreasing ECM

Increasing cellularity
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Methodology: 10 plex immunofluorescence staining of biomarkers

CD3 CD4 CD8 CD68

PD1 PDL1 FOXP3 Total Immune 
Cells

CD31

αSMA

50μm

50μm

IMMUNE NON-IMMUNE 
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Results
Epithelial Pathway

Biomarker densities by BBD lesion 

severity
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Varying biomarker densities observed by 
epithelial lesion severity for adaptive immune 
cell markers

P = 0.0138 P = 0.0185P = 0.0115P = 0.0041
CD3 CD4 CD8Total
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Variation in biomarker densities observed among epithelial 
lesions for CD68 and PDL1, but not PD1 and FOXP3

P = 0.3206 P = 0.0050P = 0.2228P = 0.0009
CD68 FOXP3 PD1 PDL1

Innate Immunoregulatory Immune Escape



13

No clear patterns of biomarker densities by lesion 
severity for non-immune markers, CD31 and αSMA

P = 0.1825P = 0.3129
CD31 αSMA
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Results
Stromal Pathway

Biomarker densities by stromal 

disruption phenotypes
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Significant differences observed in adaptive immune 
cell biomarker expression within stromal disruption 
phenotypes

P < 0.0001 P = 0.0051P = 0.0001P = 0.0322
CD3 CD4 CD8Total
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Significant differences observed in biomarker densities among 
stromal disruption phenotypes for innate immune markers 
CD68, FOXP3, and PDL1 but not for PD1

P = 0.0249 P = 0.0049P = 0.1894P < 0.0001

CD68 FOXP3 PD1 PDL1

Innate Immunoregulatory Immune Escape
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Significant differences observed in non-immune biomarker 
densities within stromal disruption phenotypes

P = 0.0281P < 0.0001

CD31 αSMA
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Results
1. Epithelial pathway regression model

2. Stromal disruption regression model
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DCIS is associated with increased immune infiltration 
compared to NPD

* Adjusted for age, BMI, and biopsy type
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Increasing stromal disruption is associated with 
increasing immune infiltration for all markers

* Adjusted for age, BMI, biopsy type, and lesion severity
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Conclusion / Implications

▪ Results suggest that diverse immune and non-immune related 

mechanisms ‘might’ be operative in premalignant/preinvasive tissues

▪ The degree of epithelial and stromal changes on premalignant breast 

biopsies did correlate with disparate immune and non-immune cell 

infiltration phenotypes.

▪ If confirmed, the findings could have implications for the way we 

approach breast cancer prevention strategies

▪ Further, larger longitudinal studies are required to understand how 

these distinct (epithelial or stromal) immune mechanisms may have 

potentially different implications for BC risk and tumor biology.
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Several clinical uses of breast cancer risk 
assessment
 Identify women who could benefit from additional care to improve screening outcomes

 Identify women at high risk in the short-term. 1-5-year risk assessment

 Women diagnosed with a more aggressive tumor (e.g. symptomatic cancer, late-stage cancer)

 Women may benefit from supplemental screening after being identified in an actionable time-window

 Identify women who could benefit from risk reducing intervention to prevent breast cancer

 Identify women who do not benefit from regularly attending breast cancer screening

3



Clinically available risk models and reported discriminatory 
performances
Women at general risk of breast cancer in a Swedish screening population
(5-year risk)

4

A
U

C

0.5

0.6

0.7

0.8

0.9

1

Gail Tyrer-Cuzick Gail + density Tyrer-Cuzick
+ density

BCSC



Could image data be used for risk assessment?

 Mammographic density is a well-known risk factor that has been studied over several decades

 Mammographic density has been added to risk models such as Gail, Tyrer-Cuzick, BCSC, and 

CanRisk (BOADICEA)

 More mammographic features beyond density could also be associated with risk of breast cancer

 By combining multiple mammographic features, an image-based risk model could be created

 Replication of predictive performance of a model across different population can assure the 

clinical value of the model

 For short-term risk models, a recent systematic review showed that 20 image-derived AI risk 

models now have been developed and evaluated (Hussain et al, 2024)

5
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Calcifications / masses, 
left-right breast asymmetry

OPTIONAL: BMI, menopausal status, family history of breast 

cancer, hormone replacement therapy, alcohol, tobacco, 

polygenic risk score (313 SNPs)

Mammographic density, left-right breast asymmetry, age

Risk models have been developed using mammographic 
features that includes density and features beyond density



Use of short-term risk assessment in the clinic

Courtesy Axel Gräwingholt, radiologist, Germany 7

2014 2016 2018 2021

Diagnosis

63-year old woman diagnosed in 2021



A risk model for DBT for use in screening in the U.S.

8

 Approximately 80% of screening units in the U.S. use digital breast 
tomosynthesis (DBT)

 We developed and evaluated an image-based risk model for DBT that 
assesses the short-term risk of breast cancer



Digital Breast Tomosynthesis generates an image stack of 200-300 
images in millimeter-thick slices of the breast

9

In comparison, 
digital 

mammography 
only 4 images



AI extracts image features from negative 
mammograms

10

A deep learning algorithm based on the convolutional neural networks. Transfer learning 
techniques and regularization is also used during model training.



The DBT AI risk model was developed in the U.S. 
screening setting

11

In total, 154,200 women were screened from 2014-2019 at the four U.S. 
screening sites using DBT. We performed a nested case-control study including:

Cases, n = 805Healthy, n = 5,173Characteristic
61.11 (9.12)57.88 (9.93)Age at mammography

672 / 805 (83%)3,809 / 5,173 (74%)Age >50 (postmenopausal)
61.93 (8.86)-Age at breast cancer diagnosis

677 / 805 (84%)-Screen detected cancers

Site
81 / 805 (10%)523 / 5,173 (10%)Boca Raton

420 / 805 (52%)452 / 5,173 (8.7%)Elizabeth Wende Breast Care
227 / 805 (28%)1,153 / 5,173 (22%)Larchmont

77 / 805 (9.6%)3,045 / 5,173 (59%)Zwanger-Pesiri



Methods – Absolute risk model and final risk evaluation

 An absolute risk model was developed based on the extracted AI mammographic features, age, breast 
cancer incidence rates, and competing mortality rates

 Risk model validation was performed in a separate test set

 Discriminatory performance to assess the ability separate future cases from controls

 Model calibration to assess the ability to corresponding number of events as was observed in the cohort

 Risk classification using clinical guidelines to identify women who could be offered supplemental 
screening

12



Results on discriminatory performance of DBT AI risk
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Postmenopausal 

(age>50)

Premenopausal 

(age≤50)
All women

Subgroups of women 

by DBT vendor
95% CIAUC95% CIAUC95% CIAUCValidation set (n=1,792)

0.77 - 0.840.800.83 - 0.920.880.79 - 0.850.82Vendors combined
0.82 - 0.890.860.89 - 0.960.930.85 - 0.910.88Hologic
0.66 - 0.810.740.64 - 0.880.770.69 - 0.820.76Siemens

0.66 - 0.880.780.42 - 0.920.700.66 - 0.860.77GE



Model calibration of DBT AI risk – a comparison between predicted risks 
and observed proportions of breast cancers

14



Risk classification of women into five categories from low to very high 
risk of breast cancer in 1 year using USPSTF guidelines

15

 
Risk group (risk-cutoff)  Women at risk, % Absolute 1-year risk, % Risk ratio 

Low (<0.12) 45 0.05 1.0 (ref.) 

General (0.12-<0.34) 31 0.20 3.9 

Moderate (0.34-<0.6) 11 0.45 8.7 

High (0.6-<1.2) 8.6 0.84 16.2 

Very high (≥1.2) 5.4 1.30 25.1 
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Interestingly, similar risk stratification performances were 
seen for women with dense and non-dense breasts

16

Risk ratio
Absolute 1-year 

risk, %
Women at risk, %USPSTF risk group (risk-cutoff)

Low mammographic density

1.0 (ref.)0.0546Low (<0.12)

3.90.2030General (0.12-<0.34)

8.80.4610Moderate (0.34-<0.6)

16.30.859.9High (0.6-<1.2)

24.81.294.3Very high (≥1.2)

High mammographic density

1.0 (ref.)0.0543Low (<0.12)

4.00.2132General (0.12-<0.34)

8.70.4511Moderate (0.34-<0.6)

16.00.837.3High (0.6-<1.2)

25.31.316.5Very high (≥1.2)



DBT AI risk stratification results for overall breast 
cancer and by breast cancer subtypes
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Stage % (95% CI)Invasiveness % (95% CI)Cancers combined
% (95% CI)

Women at risk, %
II or laterI0InvasiveIn-situ

USPSTF risk categories (cumulative %)

53 (41-64)35 (31-39)33 (27-40)37 (33-41)33 (27-40)36 (33-39)Very high (5.4)

76 (65-85)58 (53-62)59 (52-65)59 (55-63)59 (52-65)59 (56-62)High (14)

88 (78-94)72 (68-75)74 (67-80)73 (69-76)74 (67-80)73 (70-76)Moderate (25)

97 (90-99)89 (86-91)90 (84-93)89 (86-91)90 (84-93)89 (87-91)General (56)

100100100100100100Low (100)



Conclusion

 The 1-year DBT AI risk model had a good ability to identify women at high risk of breast
cancer in screening

 AUC=0.82 with good calibration

 After one year, 58% of stage 1 and 76% of the stage II+ cancers were diagnosed in the 14% of 
women at high-risk at baseline (high-risk defined using USPSTF guidelines). 

 Similar risk stratification performances were observed in women with mammographic dense and 
non-dense tissue. 

 In addition, 45% of the women had low risk of breast cancer (4 times lower than general risk)

 DBT AI risk has the potential to inform clinical decision on women at high risk of breast 
cancer who may need follow-up after a negative screening exam

18

A. Personalized screening to improve breast cancer detection
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RISE UP for BC Session 4

Risk Prediction and Biomarkers 
for Prevention Trials



‘Omics’ Approaches to Identify Pathways 
for Prevention

• Adetunji T. Toriola: 
Identifying New 
Targetable Pathways for 
Breast Cancer Prevention 
in Premenopausal 
Women

Common pathways linking early life adiposity,
dense breast tissue and breast cancer tissue

Goal: cheap, effective, and specific drugs that 
can be used for prevention



AI image analysis for BC risk prediction

• Mark Powell: Senescence-Based Deep Learning 

Predicts Breast Cancer Risk Using H&E Core 

Biopsy Images From Healthy Women.

• Suleeporn (Yui) Sujichantararat: Predicting Risk of 

Future Breast Cancer Based on Screening MRI 

Features.

• Mikael Eriksson: Using Digital Breast 

Thomosynthesis Images for Short Term (1-5 year) 

Risk Prediction.



AI Imaging Analysis for Understanding Pre-Malignant 
Tissue and Immune Features Associated with BC Risk

• Mustapha Abubakar: Stromal Inflammation (AI 
on H&E images) as a Driver of Parity-related 
Breast Cancer Etiologic Heterogeneity

• Vagmi Luhar: Correlation between epithelial 
and stromal changes (AI-on H&E images) in 
premalignant tissue and immune and non-
immune cell infiltration phenotypes



The New Era of Risk Prediction

• Traditional risk factor-based models provide relatively limited prediction.

• Polygenic risk scores are improving but AUC is still <0.7.

• AI is transforming how we solve classification problems: AI image 
interpretation models are hitting AUC >0.8.

• Potential for combining PRS with AI-image based and EHR data for risk 
prediction.

Important Considerations

• AI has larger amounts of data from NHW individuals. This can affect 
accuracy of prediction in other groups.

• Think about the implementation of AI based risk prediction based on image 
data, EHR and PRS in low resource settings (US and abroad) where this 
type of data is limited or patchy. 

• Patients’ acceptance of the use of AI for their care decision making.
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