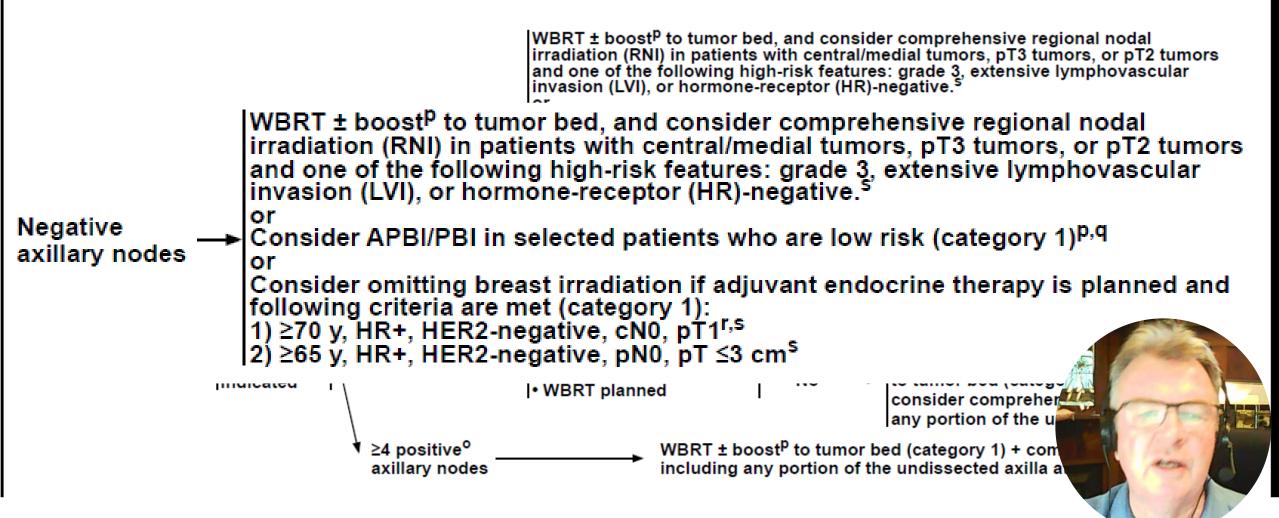

Radiation therapy can be safely avoided in women age 50 or older with stage I non TNBC

Bruce Mann


The Royal Melbourne Hospital

LOCOREGIONAL TREATMENT OF cT1-3, cN0 or cN+, M0 DISEASE^a: BREAST-CONSERVING SURGERY (BCS) FOLLOWED BY RT

"Safely avoided"

- 1. without harm or injury:
- 2. without risk or danger:
- 3. in a way that protects from loss, damage, or harm:
- 4. without likelihood of being wrong;

SignMission.com • 1-561-508-6513

0S-DS-Par-L-1422

SignMission.com • 1-561-508-6513

SignMission.com • 1-561-508-6513

Presumably Radiation is safe...

RADIATION SAFETY: What is ALARA?

As Low as Reasonably Achievable

Balancing risks

Risks of no RT

Risks of RT

Complications of radiation therapy:

Acute toxicity:

- Burned skin
- Moist desquamation
- Pain
- Dry swallow
- Tickly cough
- Fatigue
- Disruption to daily life

More Complications:

Acute toxicity:

- Burned skin
- Moist desquamation
- Pain
- Dry swallow
- Tickly cough
- Fatigue
- Disruption to daily life

Medium term toxicity:

- Fibrosis
- Fat necrosis
- Shape distortions
- Chronic pain
- Psychological impact
- Reduced upper limb mobility
- Financial and social toxic

Even More Complications:

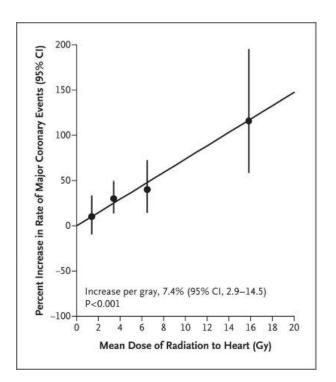
Acute toxicity:

- Burned skin
- Moist desquamation
- Pain
- Dry swallow
- Tickly cough
- Fatigue
- Disruption to daily life

Medium term toxicity:

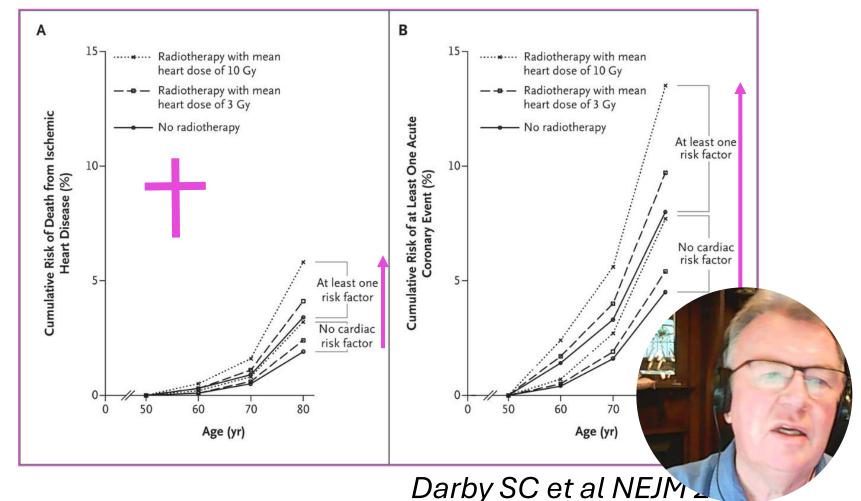
- Fibrosis
- Fat necrosis
- Shape distortions
- Chronic pain
- Psychological impact
- Reduced upper limb mobility
- Financial and social toxicity

Second cancers:


- Lung
- Esophagus
- Angiosarcoma

Longer term effects:

- Skin changes
- Telangiectasia
- Fibrosis
- Chronic pain
- Worry of reg
- Less limb
- Brachial p

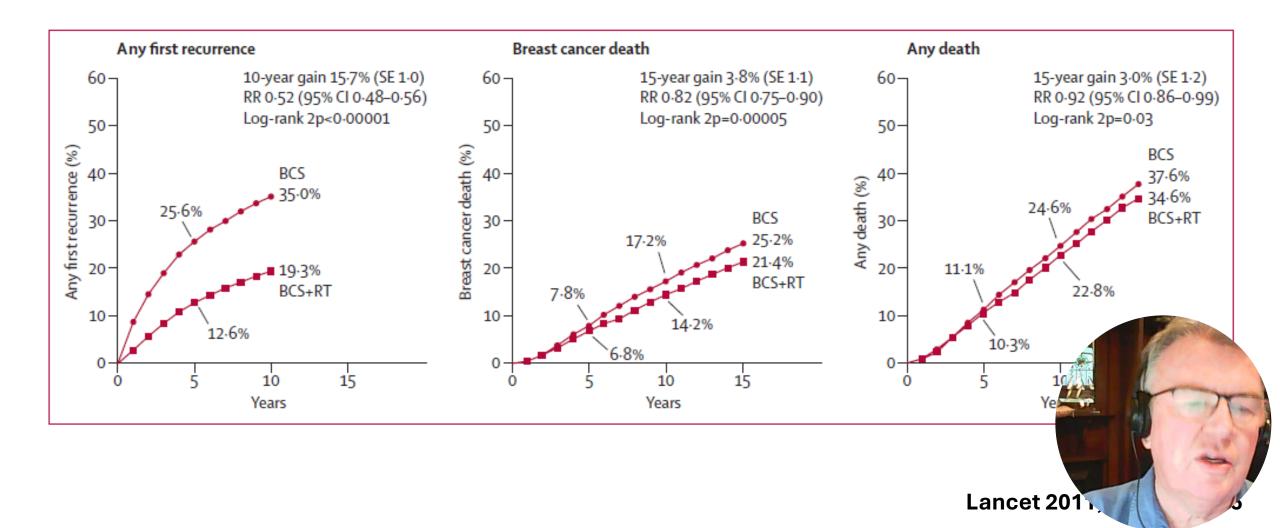


And it does not stop there:

No "safe dose" of radiotherapy to the heart

Cardiac events and mortality increase with age and co-morbidities

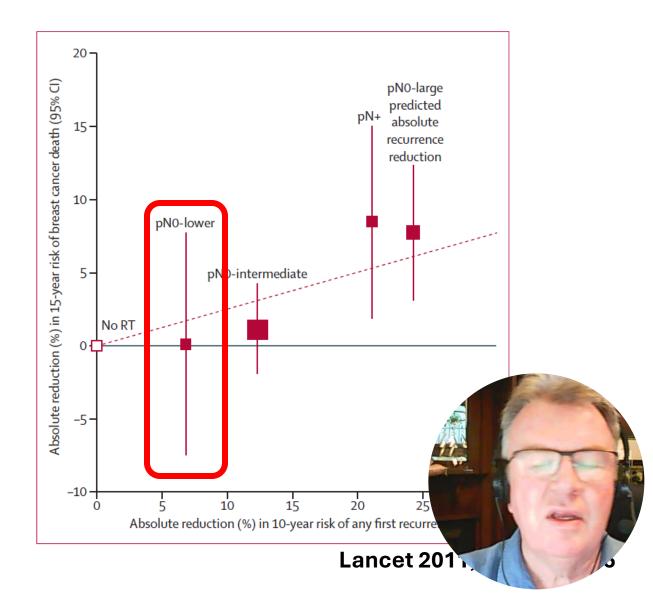
Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10801 women in 17 randomised trials



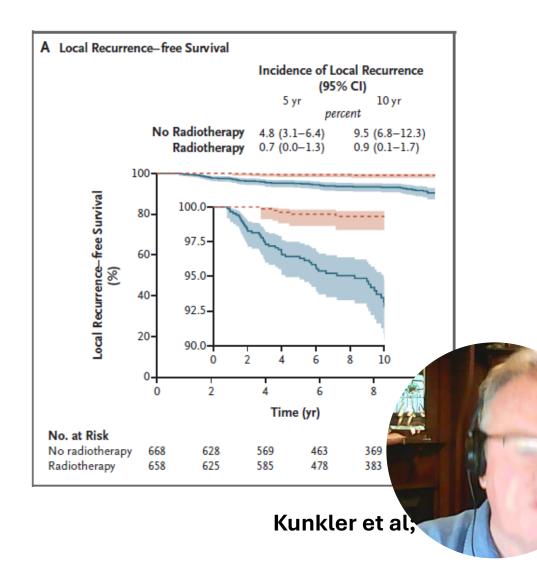
Early Breast Cancer Trialists' Collaborative Group (EBCTCG)*

Summary

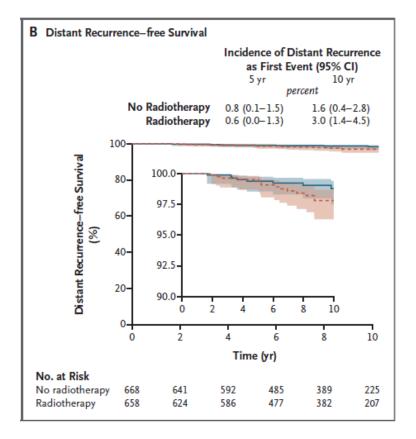
Background After breast-conserving surgery, radiotherapy reduces recurrence and breast cancer death, but it may do so more for some groups of women than for others. We describe the absolute magnitude of these reductions according to various prognostic and other patient characteristics, and relate the absolute reduction in 15-year risk of breast cancer death to the absolute reduction in 10-year recurrence risk.

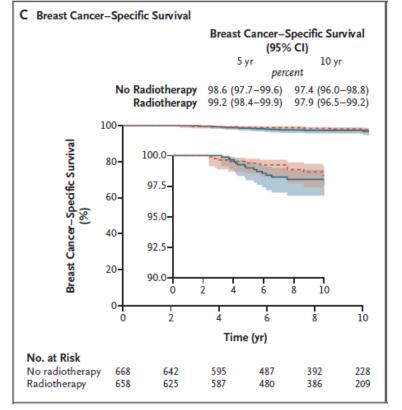


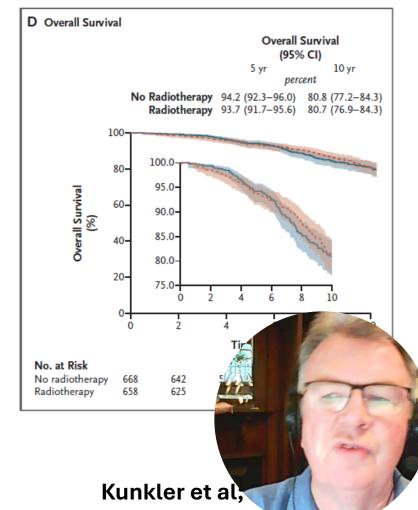
	Events per woman-year during years 0–9			Ratio of annual event rates BCS+RT vs BCS (CI)*	
	Allocated BCS+RT	Allocated BCS			
(a) Entry age (trend χ ₁ ² =0·0; 2p=0·9)					
<40 years	5.9%	11.5%		0.49 (0.32-0.76)	
40-49 years	2.7%	6.1%	- -	0.44 (0.33-0.58)	
50–59 years	1.9%	4-0%	∔	0.47 (0.36-0.61)	
60–69 years	1.6%	3.6%	- -	0.45 (0.35-0.59)	
70+ years	1.0%	2.1%		0.45 (0.28–0.72)	
(b) Tumour grade (trend χ ₁ ² =0·0; 2p=0·9)					
Low	1.0%	2.5%	_ _	0.43 (0.29–0.65)	
Intermediate	2.2%	4-4%	- #	0.47 (0.35–0.63)	
High	4.1%	9.8%	- -	0.43 (0.32–0.58)	
Grade unknown	1.8%	3.6%		0.48 (0.39–0.59)	
(c) Tumour size (trend χ_1^2 =1.7; 2p=0.2)					
T1 (1–20 mm)	1.5%	3.5%		0.42 (0.36–0.50)	
T2 (21–50 mm)	4.5%	8.9%	- 	0.50 (0.37–0.66)	
Various/unknown	2.9%	4-2%		0.74 (0.43-1.27)	
(d) Surgery, ER status, and trial policy of tamox	ifen use† (heteroge	neity χ ₃ ² =11·4; 2p=0·01)			
Lumpectomy, ER-positive no tamoxifen	3.3%	8.0%	· 🕂 🔰	0.41 (0.33–0.52)	
Lumpectomy, ER-poor	5.2%	8.5%		0.65 (0.46–0.94)	
>Lumpectomy, ER-positive no tamoxifen/ER-poor	r 1.6%	3.2%		0.51 (0.39–0.67)	
Lumpectomy, ER-positive with tamoxifen	0.9%	2.4%	- # -	0.38 (0.29-0.51)	


Lancet 201

- pN0 divided into groups according to predicted absolute reduction in LR risk
 - Lower 12.0 vs 18.9%
 - Inter 12.4% vs 18.9%
 - Large 26.0% vs 50.3%
- Differences in 15yr breast cancer mortality
 - Lower 0.1% (-7.5 to 7.7)
 - Inter 1.1% (-2.0 to 4.2)
 - Large 7.8% (3.1 to 12.5)
- A 6.9% reduction in LR at 10 years has no impact in breast cancer mortality




PRIME 2 – RCT of RT omission


- 65 or over
- Tumour size <30mm
- Node negative
- ER or PR positive i.e. not TNBC
- Not Grade 3 and LVI positive
- Her2 status not measured
 - No anti-HER2 therapy

PRIME 2

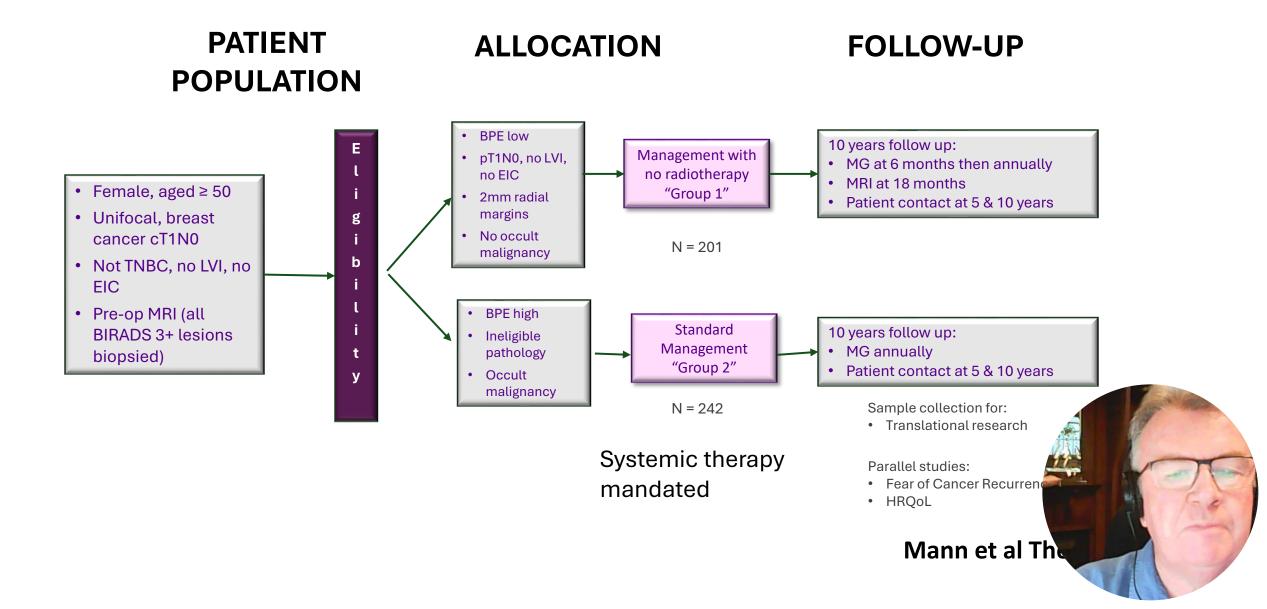
What about patients 50-65yo?

• NRG-BR007 - The DEBRA Trial: De-escalating Breast Radiation After Lumpectomy for Low Risk, Estrogen Receptor Positive, Breast Cancer

• Age \geq 50 years, pT1N0, RS \leq 18

- NRG-BR008 HERO: A Phase III Randomized Trial of Radiotherapy Optimization for Low-Risk HER2-Positive Breast Cancer
 - Age \geq 40 years, HER2+, pT1N0

Formerly known as the Australia & New Zealand Breast Cancer Trials Group


ANZ 1002: PROSPECT <u>Post-operative Radiotherapy Omission in Selected Patients with</u> <u>Early breast Cancer Trial</u>

A Two-Arm Cohort study using MRI to assess post-operative radiotherapy omission in selected patients with early breast cancer

GB Mann, AR Skandarajah, N Zdenkowski, J Hughes, A Park, D Petrie, K Saxby, SM Grimmond, A Murugasu, AJ Spillane, BH Chua, H Badger, H Braggett, V Gebski, A Mou, JP Collins , AK Rose

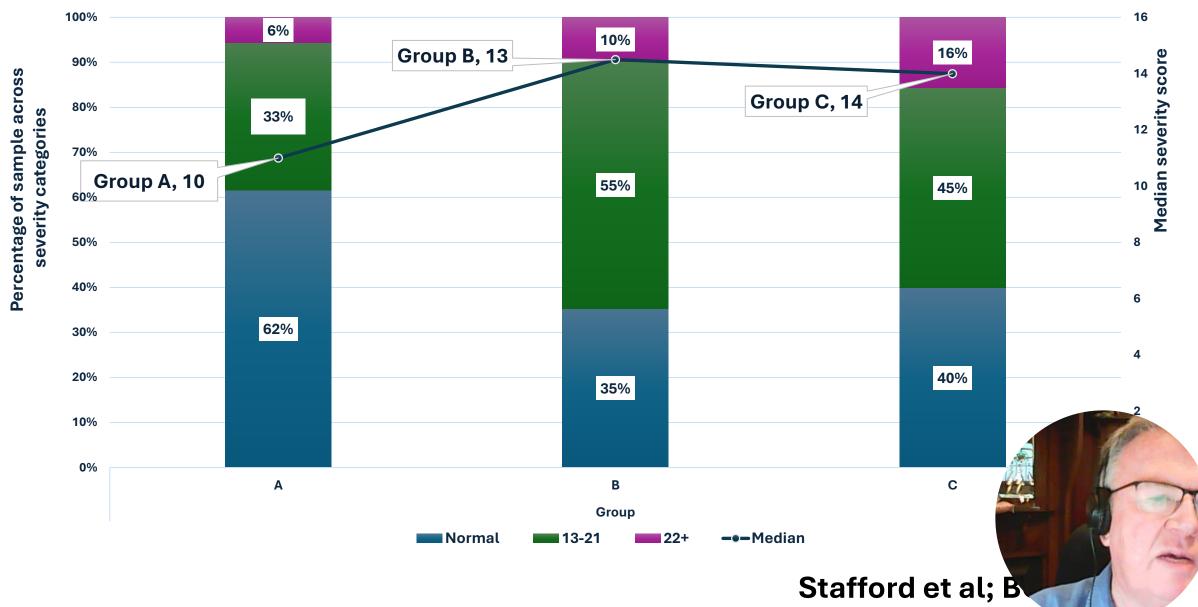
PROSPECT Schema

Events in entire cohort at time of primary analysis

Group 1 patients (201/201)	Events
Ipsilateral invasive LR	2
Ipsilateral regional recurrence	1
Ipsi regional and Distant recurrence	1
Contralateral cancer	2
Group 2 patients (228/242)	
Ipsilateral recurrence	3
Contralateral cancer	3

Events at 5 years

- 1% Ipsilateral LR
- 1% isolated regional recurrence
- 1% distant recurrence
- 2% contralateral primary

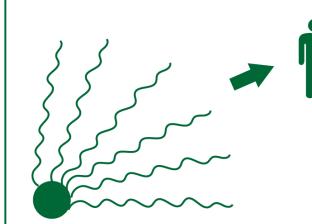


PROSPECT Quality of Life study

- Three groups of women:
 - enrolled in PROSPECT (had MRI, omitted RT) \rightarrow Group A
 - screened out of PROSPECT (had MRI, had RT) \rightarrow Group B
 - clinically matched to those who had PROSPECT MRI (no MRI, had RT)→ Group C
- Fear of Cancer Recurrence Inventory (FCRI) severity subscale
 - Cut-offs \geq 13/36 (need further assessment) and \geq 22/36 (clinically severe FCR)

Stafford et al; B

FCR across groups by severity and median

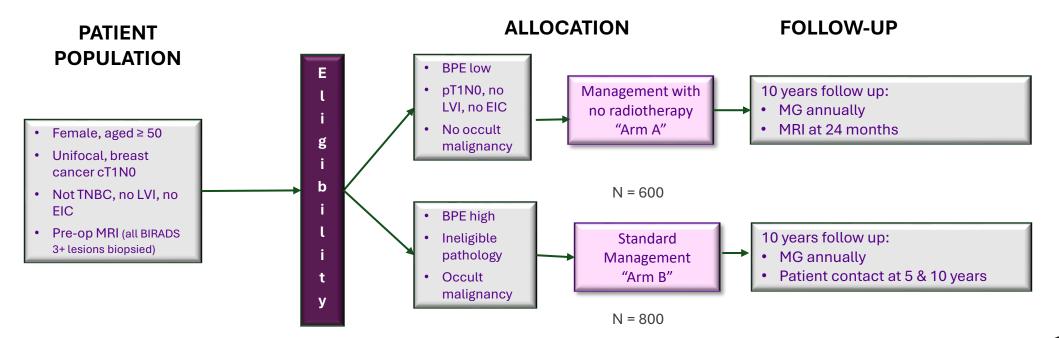


Making radiation less dangerous

To reduce radiation exposure:

Limit Time

Increase Distance


Use Shielding

PROSPECTIVE Schema

PROSPECT International Validation Experience (Phase III, two-arm, non-randomised),

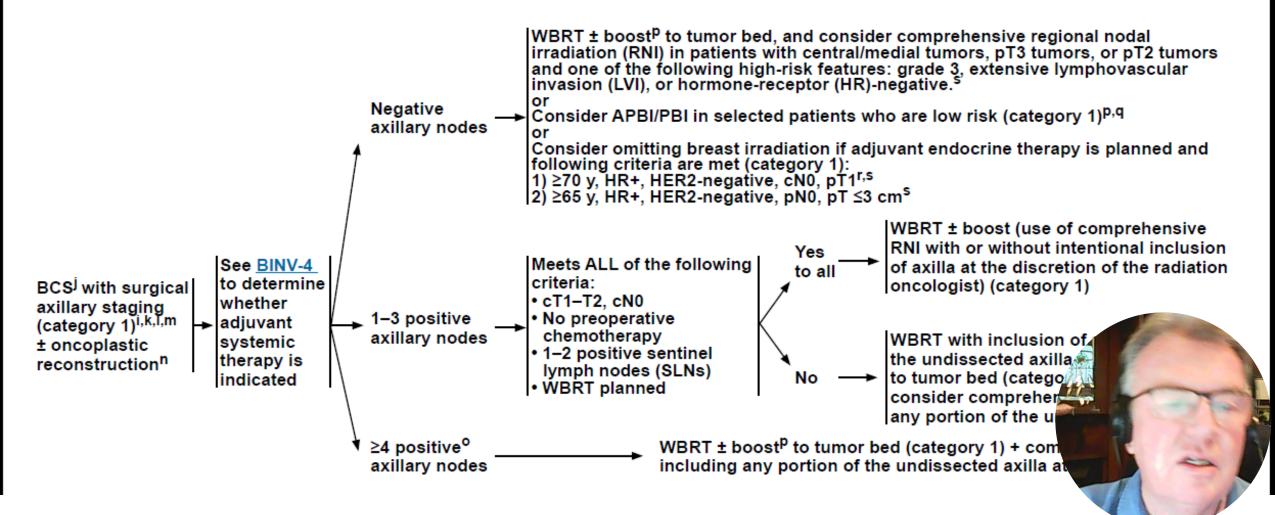
Omission of radiation in women over 50 with Stage 1 non-TNBC Endocrine therapy not mandated for lower risk

Data/sample collection

- ET compliance
- QoL
- Translational resea

Treatment Aims

- To reduce the impact of the disease
- We tend to :
 - over-estimate the benefit of our treatments
 - under-estimate the risks and side effects
 - not consider the costs
- We should recommend treatments that reduce the risk of deather
 - We should discuss the risks and benefits of other treatments


De-escalation

- Theoretically most people agree with the aim
 - Practically it is very difficult.
- Over-treatment is hidden (and feels good to us)
 - Happy patients who have no recurrence
 - Believe they have been cured by all the treatment
- Under-treatment is obvious
 - Unhappy patients
 - May blame the doctors

LOCOREGIONAL TREATMENT OF cT1-3, cN0 or cN+, M0 DISEASE^a: BREAST-CONSERVING SURGERY (BCS) FOLLOWED BY RT

Radiation therapy **can** be safely avoided in women age 50 or older with stage I non TNBC

The data is not the barrier

"Who should I examine first, you or your lawyer?"

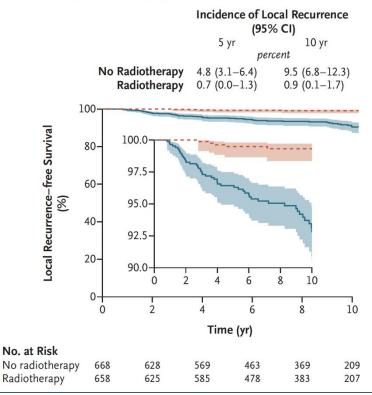
Five days, not five years

Radiotherapy for favorable early-stage breast cancer

Nicolas D. Prionas, MD PhD Department of Radiation Oncology University of California, San Francisco November 1, 2024

Disclosure Information

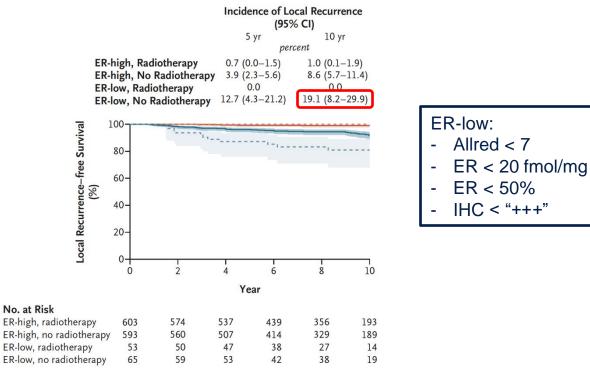
Nicolas D. Prionas, MD PhD I have no financial relationships to disclose.

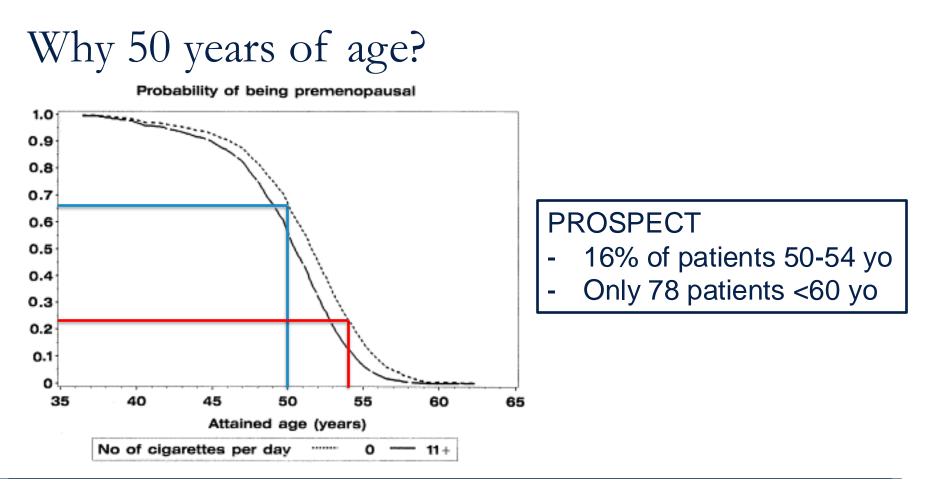

Radiation therapy can be safely avoided in:

- women age 50 or older
- with stage I
- non-TNBC

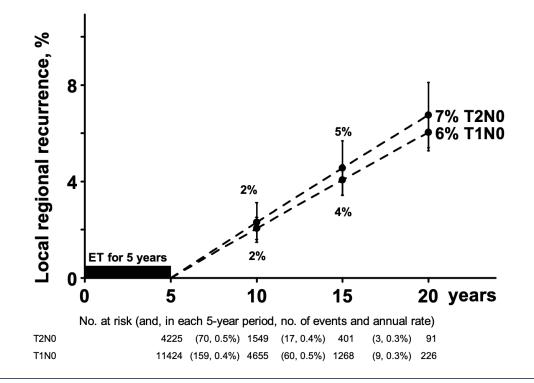
PRIME II – 10-year outcomes

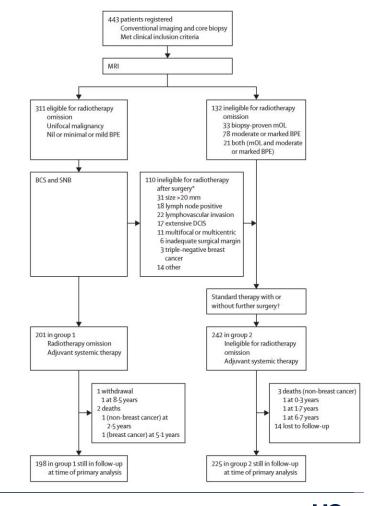
A Local Recurrence-free Survival




PRIME II - ER-low

- ER-high, radiotherapy ---- ER-high, no radiotherapy --- ER-low, radiotherapy


--- ER-low, no radiotherapy


Recurrence risk increases linearly with time

PROSPECT Trial

- 311 eligible for XRT
 - 22 LVSI+ (7%)
 - 17 EIC+ (5.5%)
 - 6 Margins (2%)
 - 14 "Other" clinical decision (4.5%)

19% of T1N0 XRT-eligible patients excluded from omission

Other adverse features

	PRIME II	PROSPECT
Grade 3	3.4%	5%
LVSI	4.8%	0%
ER-low	9.7%	
Lobular		12%
Ki67		
Genomic assay		

Not all breast MRI is equal

MD Anderson MRI review

- 88 cases referred from around the US

TABLE 5 Most Common Technical Deficiencies

Type of Deficiency	No. (%) of Patients	No. (%) of Patients for Whom Repeat MRI was Recommended
Artifact	65 (74)	29 (33)
T2-weighted or equivalent sequence deficiency	33 (38)	14 (16)
Delayed-phase last postcontrast T1-weighted sequence deficiency	24 (27)	9 (10)
Early-phase first postcontrast T1-weighted sequence deficiency	20 (23)	8 (9)

TABLE 6. Distribution of Recommendations to RepeatBreast MRI					
Number of Technical Deficiencies	Number of Outside MRIs	Recommendation to Repeat MRI			
0	28	13 (46%)			
1	19	11 (58%)			
2–4	26	11 (42%)			
>4	15	6 (40%)			

Cost of recurrence

- Quality of life
 - Recurrence impairs physical, functional, and emotional well-being of patients and their family members.
- Financial
 - Repeat work-up (H&P, fertility?, imaging, pathology) and treatment (surgery, adjuvant therapies)
- Physical
 - Cosmesis of repeat breast conservation vs Mastectomy

Accelerated Partial Breast Irradiation

APBI has less acute and late toxicity

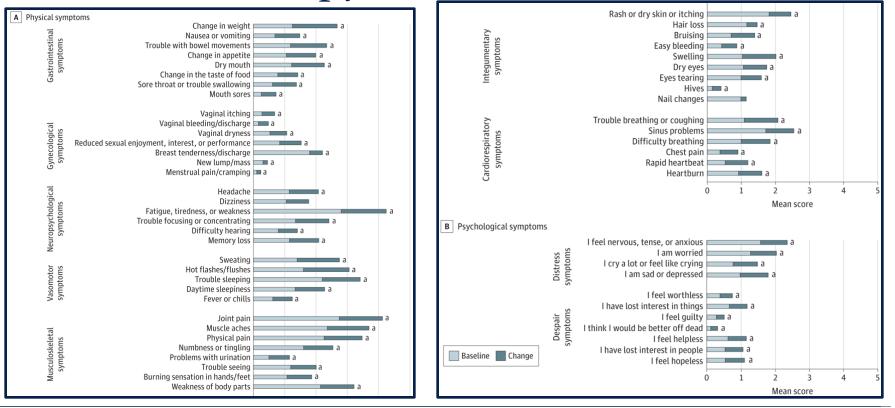
APBI has better cosmesis (patient and MD rated)

Toxicity	APBI	WBRT
Acute	G1: 19.1% G2+: 2.0%	G1: 28.8% G2+: 37.7%
Late	G1: 4.5% G2+: 0%	G1: 27.3% G2+: 2.7%

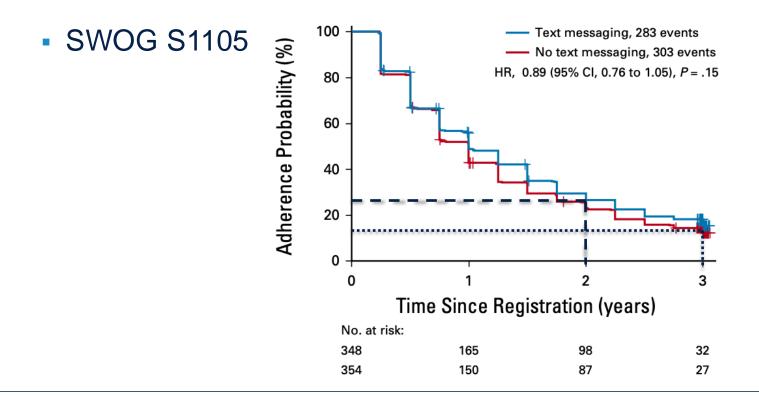

Prone APBI

Cardiac avoidance - DIBH

Free Breathing



Deep Inspiration Breath Hold



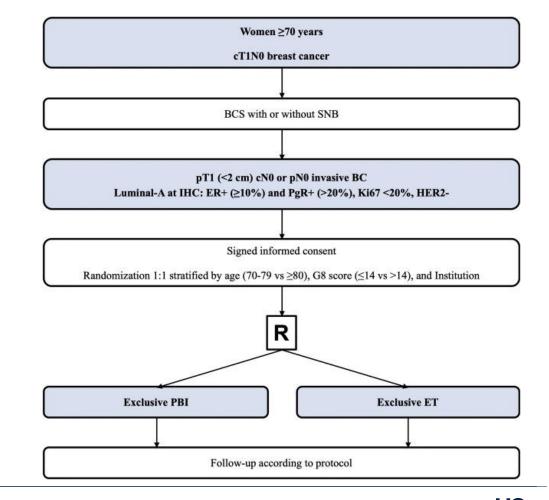
Endocrine therapy is toxic

Hu et al. Racial Differences in Patient-Reported Symptoms and Adherence to Adjuvant Endocrine Therapy Among Women With Early-Stage, Hormone Receptor–Positive Breast Cancer. *JAMA Netw Open*. 2022.

Low adherence to endocrine therapy

Hershman et al. Randomized Trial of Text Messaging to Reduce Early Discontinuation of Adjuvant Aromatase Inhibitor Therapy in Women With Early-Stage Breast Cancer: SWOG S1105. J Clin Oncol. 2020.

PROSPECT Trial Endocrine Therapy


87% completed 5 years of endocrine therapy

	Index cancer pathology	Radiotherapy given for index cancer	Timing of event	Subsequent event location	Subsequent event management	5-year IIRR (upper 95% CI, two- sided)*	
Group 1 (n	Group 1 (n=201)—primary outcome						
Event 1	12 mm; grade 2; ER-positive, HER2-negative	No	4·5 years	lpsilateral invasive	BCS, radiotherapy, systemic therapy	1.0% (5.4%)	
Group 1 (n=201)—secondary outcomes							
Event 2	18 mm; grade 1; ER-positive, HER2-negative	No	7.5 years	lpsilateral invasive	Total mastectomy and SNB, systemic therapy	NA	

EUROPA Trial

• Primary Endpoints

- PROMs
- IBTR

- Secondary Endpoints
 - LRR, DM, BCSS, OS
 - AEs
 - Cosmesis

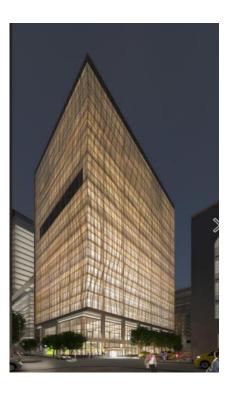
Radiation therapy can be safely avoided in:

- women age 50 or older
- with stage I
- non-TNBC

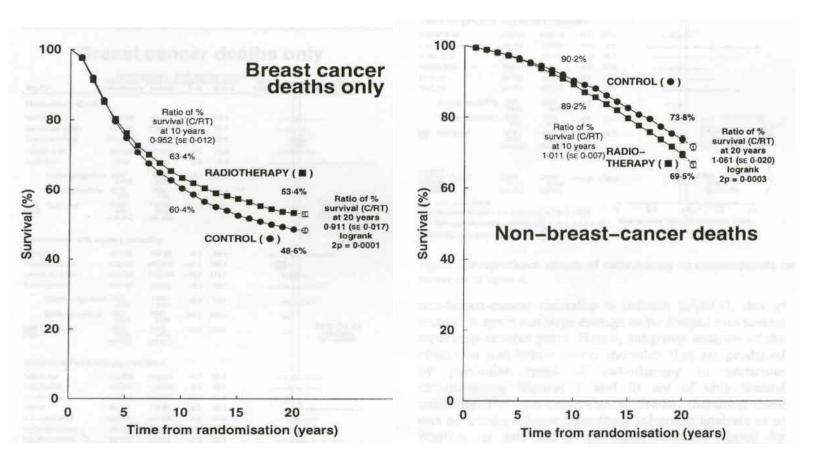
Truth:

Radiation therapy can be safely avoided in:

- women age 50 or older
- with stage I
- non-TNBC

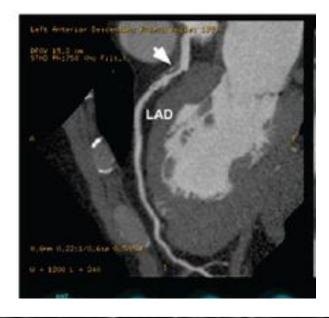

administered

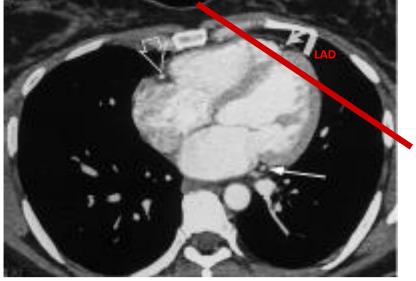
Department of Radiation Oncology



Heart and Left Anterior Descending Coronary Artery (LAD) exposure from hypo-fractionated whole breast radiotherapy with a prone set up.

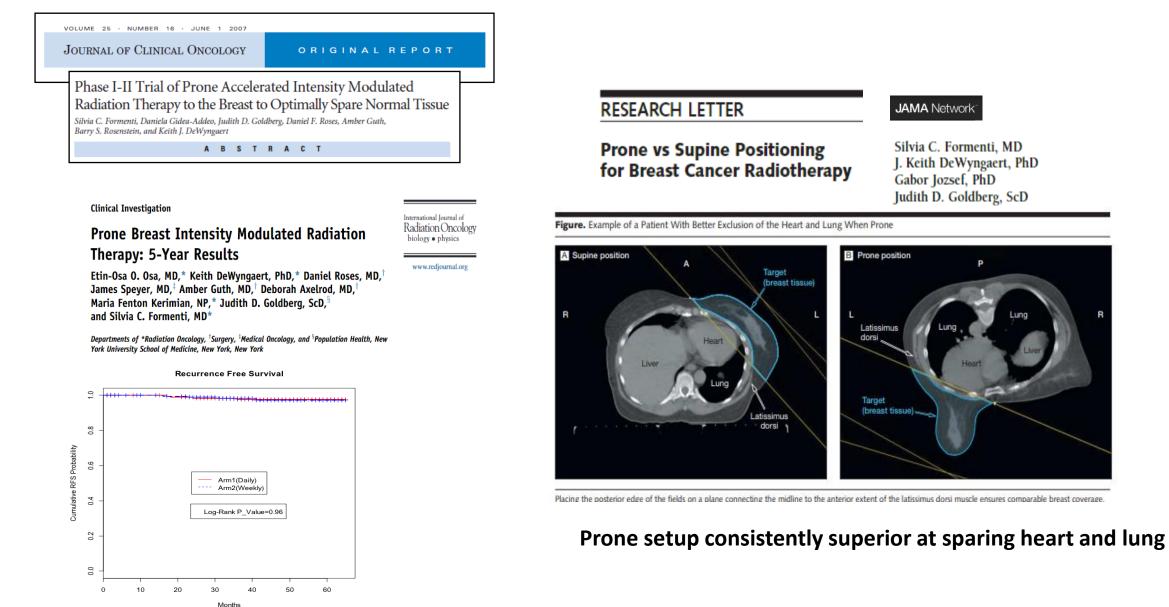
Fabiana Gregucci, MD, Elisabetta Bonzano, MD, John Ng, MD, Sharanya Chandrasekhar, MS, Lhaden Tshering BS, Xi Kathy Zhou, PhD, Maria Fenton-Kerimian, NP, Ryan Pennell, PhD, Silvia C Formenti, MD.


Historical Meta-analysis of 20,000 breast cancer patients in 40 randomized trials 20 y



 \uparrow RT related vascular mortality: RR 1.3 p = 0.0007

Good idea to spare the heart...


The Lancet 2000 May 20;355(9217):1757-70

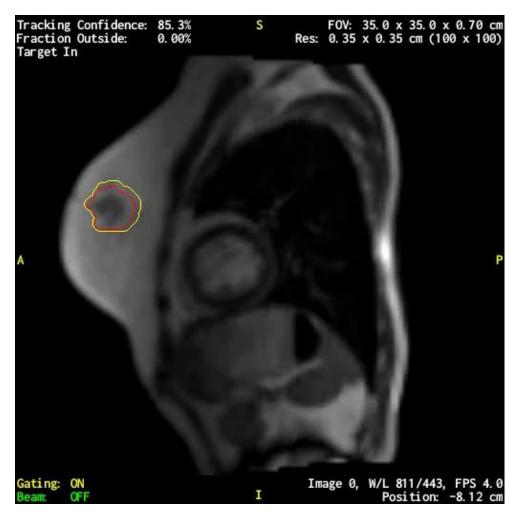
Heart and Left Anterior Descending Coronary Artery (LAD) exposure from hypo-fractionated whole breast radiotherapy with a prone set up: the NYU-Cornell experience

Heart and Left Anterior Descending Coronary Artery (LAD) exposure from hypo-fractionated whole breast radiotherapy with a prone set up: the NYU-Cornell experience



Scientific Article

Preplanning prediction of the left anterior descending artery maximum dose based on patient, dosimetric, and treatment planning parameters


Benjamin T. Cooper MD^a, Xiaochun Li PhD^b, Samuel M. Shin MD^a, Aram S. Modrek BS^a, Howard C. Hsu MD^a, J.K. DeWyngaert PhD^a, Gabor Jozsef PhD^a, Stella C. Lymberis MD^a, Judith D. Goldberg SCD^b, Silvia C. Formenti MD^{a,*} International Journal of Radiation Oncology biology • physics

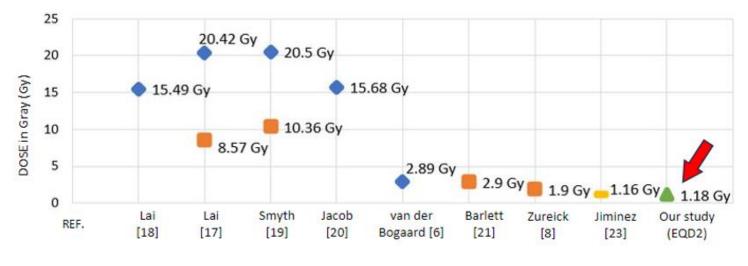
www.redjournal.org

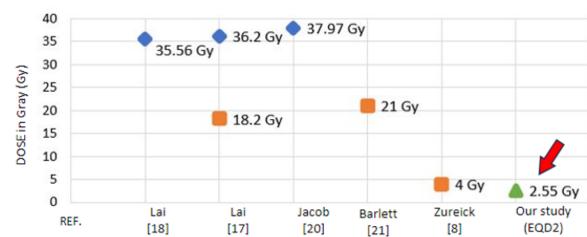
deep tangent edge at least 3 mm from closest contoured LAD point assures LAD Dmax < 10 Gy and LAD Dmean < 3.3Gy

Intra-fraction immobilization


Aims.

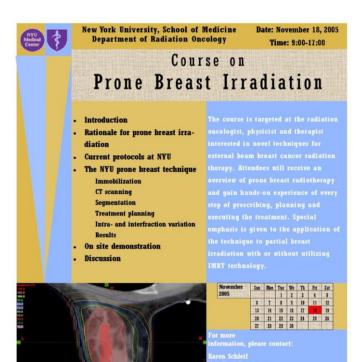
 To measure the mean heart dose (MHD) and LAD mean and maximum doses (Dmean and Dmax) in <u>524 consecutive patients with left-side breast cancer</u> who have undergone hypo-fractionated whole breast radiotherapy (WBRT) with a concomitant boost to the postoperative cavity in prone position


2. To compare the dosimetry results to those reported in the literature for other techniques


MEAN HEART DOSE

Free breathing supine position

LAD DMean


Heart and Left Anterior Descending Coronary Artery (LAD) exposure from hypo-fractionated whole breast radiotherapy with a prone set up: the NYU-Cornell experience

US Patent No 7.763.864 B2

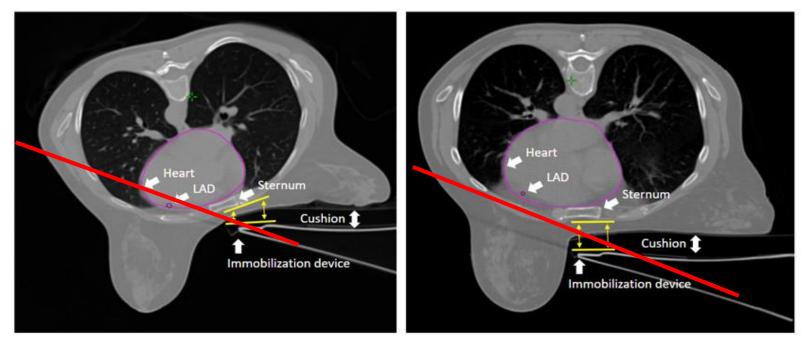
• CT simulator

• Linear accelerator

e directors: Silvia C. Formenti, MD J. Keith DeWyngaert, PhD

Easy technique to learn and easy to design prone board!

The role of a prone setup in breast radiation therapy


Nelly Huppert, Gabor Jozsef, Keith DeWyngaert and Silvia Chiara Formenti*

Department of Radiation Oncology, New York University School of Medicine, New York University Langone Medical Center, New York, NY, USA

Heart and Left Anterior Descending Coronary Artery (LAD) exposure from hypo-fractionated whole breast radiotherapy with a prone set up: the NYU-Cornell experience

Common error: prone axial rotation/sinking

(B)

Key steps include:

- 1) accurately contouring the heart surface and LAD
- 1) Sternum **horizontally positioned** on immobilization device, to prevent sinking or axial rotation
- 2) placing the medial edge of the tangents at least 2.46 mm from the contoured LAD

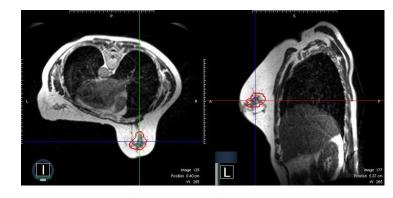
Conclusions

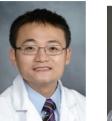
- In patients with left-side breast cancer, prone hypo-fractionated WBRT with a concomitant boost to the postoperative cavity results in optimal dose-sparing of the heart and LAD, regardless of individual body conformation and treatment volumes, without compromising target coverage.
- Heart and LAD exposures were consistently lower than any other techniques reported in the literature
- This approach can be easily adopted at any RT-based facility with the potential for globally offering a safe and sustainable care path for breast cancer treatment.

Cornell team

S. Formenti M.D.

J.K. DeWyngaert


Residents, now in academia


Nelly Huppert Stella Lymberis Shannon McDonalds Min Tam Truong Ariel Hirsh **Christine Min Jim Mitchell**

Michelle Alonso Basanta Matthew Hardee **Oniynye** Balogun Sam Shin Raini Sethi Etin Osa Osa Ben Cooper

Physicists, Dosimetrists and RTT

3/2/2021 first MR-guided prone treatment

EQUALS: Vaginal/Sexual Health (VSH) in Patients with ER+/HER2-Metastatic Breast Cancer (mBC)

Sarah L. Sammons,^{1*} Jane L. Meisel,^{2*} Kelly Shanahan,^{3*} Timothy J. Pluard,^{4*} David J. Portman,⁵ Elizabeth Attias⁵

¹Duke University, Duke Cancer Institute, Durham, NC; ²Emory Winship Cancer Institute, Atlanta, GA; ³Metavivor Research and Support, Inc, Annapolis, MD; ⁴Saint Luke's Cancer Institute, Kansas City, MO; ⁵Sermonix Pharmaceuticals, Columbus, OH

*Members of the EQUALS Steering Committee

EQUALS Elaine ESR1 & Quality of Life Survey

Disclosure

- Sermonix Pharmaceuticals—CEO, founder and stockholder
- Practicing gynecologist and women's health researcher for 20 years
- Co-Chair—Menopause Society and International Society for the Study of Women's Sexual Health 2013 Consensus Conference on Terminology associated with genitourinary symptoms associated with menopause

Introduction and Objectives

- Vaginal and sexual health (VSH) issues are commonly reported, in more than two-thirds, of women with breast cancer (BC)^{1,2}
- However, these concerns are often under-recognized and understudied in women with BC being treated with endocrine therapy (ET)
- Studies on the prevalence, impact, and management of vaginal and sexual side effects are limited in women with metastatic BC (mBC)
- The overall objectives of EQUALS (ESR1 QUAlity of Life Survey) were to explore quality
 of life (QoL) and symptoms, biomarkers, treatment side effects, and patient-medical team
 communication of women with ER+/HER2- mBC³⁻⁵
- Among these surveys, we found that VSH issues were a primary QoL concern among women with mBC³⁻⁵
- Here, we summarize the common VSH thread in ER+/HER2- mBC patients from three EQUALS studies³⁻⁵

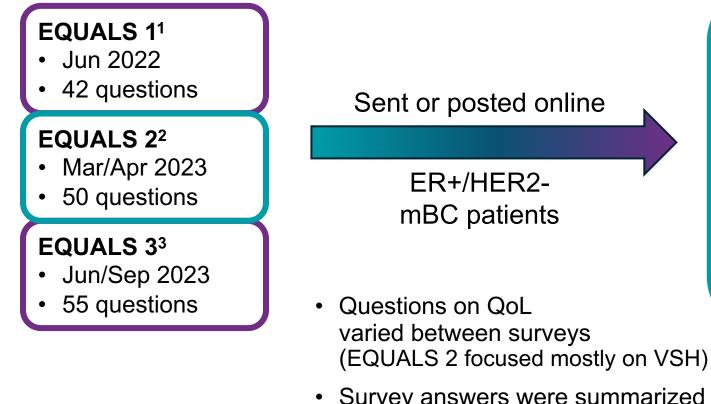
1. Huynh V, et al. Ann Surg Oncol 2022;29(10):6238-6251. 2. Gambardella A, et al. Endocrine 2018;60(3):510-515. 3. Sammons SL, et al. Cancer Res. 2023;83(5 Suppl): P6-09-01. 4. Shanahan K, et al. Menopause. 2023;30:P-89. 5. Sammons S, et al. Cancer Res. 2024;84(9 Suppl): PO5-12-06.

Cure Media Group

Authors' contacts

METAvivor

Facebook and Twitter groups


• Breast cancer clinic patients

FORCE (Facing Hereditary

Cancer EMPOWERED)

The Chrysalis Initiative

Methods: EQUALS

armaceuticals

- Survey answers were summarized descriptively and reported according to questions asked in each survey
- Patients received a \$10 gift card at survey completion

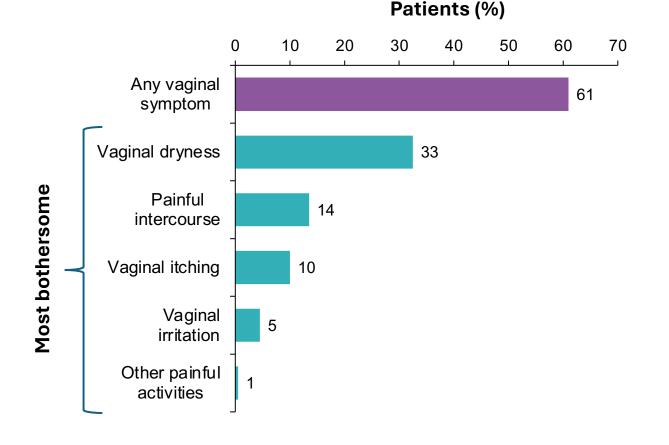
Responder Characteristics¹⁻³

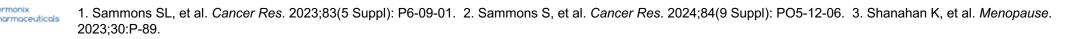
- Women (n=887) were a wide range of ages
- One-third and one-half were non-white in EQUALS 1 and 3, respectively; most were white in EQUALS 2
- Half (EQUALS 2 and 3) to almost three-quarters (EQUALS 1) lived in an urban and/or suburban setting
- About three-quarters had completed some higher education
- Most household incomes ranged from \$25,000 to \$100,000
- Women had received 1-4 lines of mBC treatment, including endocrine therapies, targeted therapies, antibody-drug conjugates, chemotherapy, and others

1. Sammons SL, et al. *Cancer Res.* 2023;83(5 Suppl): P6-09-01. 2. Shanahan K, et al. *Menopause*. 2023;30:P-89. 3. Sammons S, et al. *Cancer Res.* 2024;84(9 Suppl): PO5-12-06.

		EQUALS 1 (n=474)	EQUALS 2 (n=200)	EQUALS 3 (n=213)
Age, years	Distribution (varied by study)	<40 189 (40) 40-49 99 (21) 50-59 95 (20) 60-69 73 (15) ≥70 18 (4)	<47 43 (22) 47-55 52 (26) 56-60 47 (24) >60 58 (29)	<40 19 (9) 40-49 74 (34) 50-59 72 (34) 60-69 26 (12) ≥70 23 (11)
Race/ Ethnicity, n (%)	White Hispanic/Latino Black/African American American Indian/Alaskan Native Asian Declined to answer	319 (67) 112 (24) 32 (7) 12 (3) 7 (1) 1 (0)	170 (85) 15 (8) 13 (7) 1 (1) 1 (1) 1 (1)	94 (44) 103 (48) 9 (4) 4 (2) 0 3 (1)
Living setting, n (%)	Rural Suburban Urban	144 (30) 162 (34) 168 (35)	101 (51) 73 (37) 26 (13)	109 (51) 58 (27) 46 (22)
Highest education, n (%)	Some high school High school Bachelor's degree Master's degree Doctoral degree (JD/MD/PhD)	7 (1) 125 (28) 244 (51) 79 (17) 19 (4)	18 (9) 36 (18) 110 (55) 26 (13) 10 (5)	5 (2) 57 (27) 118 (55) 25 (12) 8 (4)
Average household income, n (%)	<\$25,000 \$25,000 to <\$50,000 \$50,000 to <\$75,000 \$75,000 to <\$100,000 \$100,000 to <\$150,000 ≥\$150,000 Declined to answer	14 (3) 116 (25) 104 (22) 83 (18) 87 (18) 46 (10) 24 (5)	3 (2) 18 (9) 76 (38) 36 (18) 28 (14) 23 (12) 16 (8)	11 (5) 45 (21) 87 (41) 29 (14) 15 (7) 9 (4) 17 (8) 5

Vaginal Symptom Prevalence

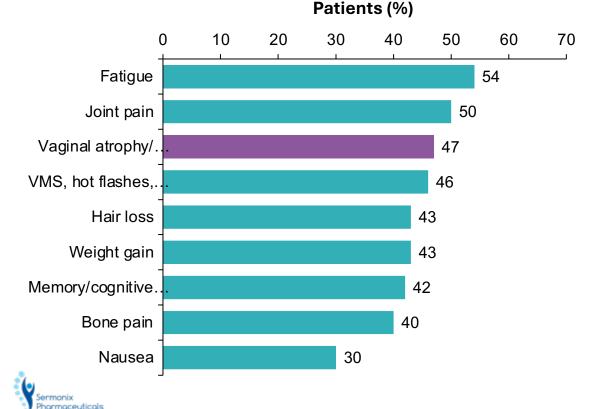

EQUALS 1 and 3^{1,2}


 Common side effects impacting QoL were vaginal atrophy/dryness in EQUALS 1 and 3, and sexual dysfunction in EQUALS 3

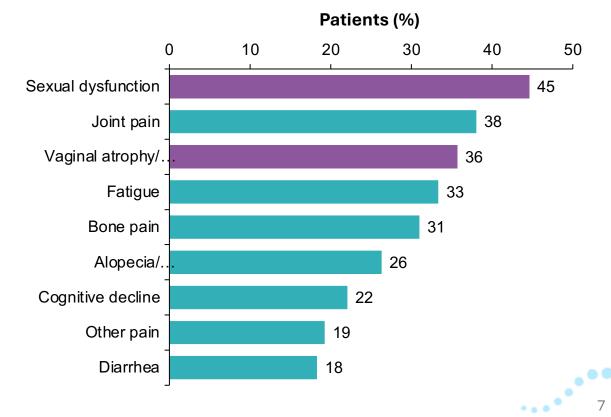
EQUALS 2³

- Vaginal symptoms were
 - Experienced by 61% of patients (Figure)
 - Associated with BC treatment for a mean of 4.8 years
- Most bothersome symptoms were vaginal dryness, painful intercourse, vaginal itching, and vaginal irritation (Figure)

EQUALS 2³



Vaginal/Sexual Symptoms Impact QoL

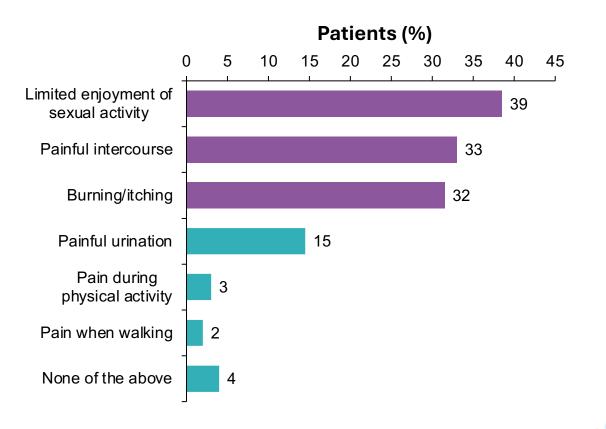

EQUALS 1¹

Vaginal atrophy/dryness impacted QoL the most or moderately in almost half (47%) of patients

EQUALS 3²

Sexual dysfunction and vaginal atrophy/dryness were the first and third side effects impacting QoL the most

1. Sammons SL, et al. Cancer Res. 2023;83(5 Suppl): P6-09-01. 2. Sammons S, et al. Cancer Res. 2024;84(9 Suppl): PO5-12-06.



Impact of Vaginal/Sexual Side Effects

EQUALS 2

- Vaginal/sexual side effects
 - Negatively impacted frequency of sexual intercourse (61%) and self-esteem (64%)
 - Made 51% feel isolated
- Most commonly reported effects of vaginal dryness were limited enjoyment of sexual activity, pain with intercourse, and vaginal itching/burning (Figure)
- More than half (54%) reported that they never/almost never felt sexual desire/interest in the past month
 - This was especially true when prior ET had negatively impacted sexual health (61%)
- Low sexual desire bothered 56% of patients

Impact of vaginal dryness

Vaginal/Sexual Side Effects Were Concerning

EQUALS 1¹

62% of patients worried about sexual intimacy

EQUALS 2²

80% of patients were concerned about the vaginal and sexual side effects of BC treatment

EQUALS 3³

In 27% of patients, sexual dysfunction was reported as extremely/moderately concerning

1. Sammons SL, et al. Cancer Res. 2023;83(5 Suppl): P6-09-01. 2. Shanahan K, et al. Menopause. 2023;30:P-89. 3. Sammons S, et al. Cancer Res. 2024;84(9 Suppl): PO5-12-06.

Discussing Vaginal/Sexual Side Effects

Women were uncomfortable talking about vaginal and sexual side effects, and felt poorly informed about them and poorly equipped by their medical team to manage them

EQUALS 1 and 2^{1,2}

- 31% to 61% of women were uncomfortable discussing sexual side effects with their medical team
- Twice as likely to discuss with their gynecologist than oncologist
- Oncologist gender influenced women's comfort discussing vaginal/sexual side effects
 - 41% to 60% of women with female oncologists felt uncomfortable
 - 56% to 64% of women with male oncologists felt uncomfortable

EQUALS 2²

- Approximately one-third of women felt
 - Poorly informed about these side effects by their medical team (38%)
 - Poorly equipped to improve these side effects (33%)

Looking forward

93% of patients in EQUALS 2 expressed interest in an FDA-approved, well-tolerated, BC treatment that also improved vaginal and sexual health

Conclusions

- Our review of three EQUALS confirms that
 - Women being treated for ER+/HER2- mBC experienced and were concerned about their vaginal/sexual side effects
 - Such side effects negatively impacted many women's frequency of intercourse, self-esteem, and feelings of isolation
- Many women were uncomfortable discussing these symptoms with their medical team and felt poorly informed and equipped to manage them
- While mBC patients were surveyed, early-stage BC patients also encounter such treatment side effects, highlighting the need for
 - Therapies that improve vaginal/sexual outcomes and side effects
 - Better communication between patients and their medical team about managing these side effects

No Longer a "Necessary Evil"

Managing Genitourinary Syndrome of Menopause in Cancer Survivors

Catherine Lu Dugan B.A., Alisha Othieno M.D., Mindy Goldman M.D. 11/01/2024

Why does GSM happen in cancer survivors?

- Estrogens: A group of hormones that play an important role in many different parts of the body
- Hormone-receptor positive (HR+) tumors use estrogen to grow
- Genitourinary Syndrome of Menopause (GSM): A collection of symptoms such as vaginal dryness, painful intercourse, and recurrent urinary tract infections

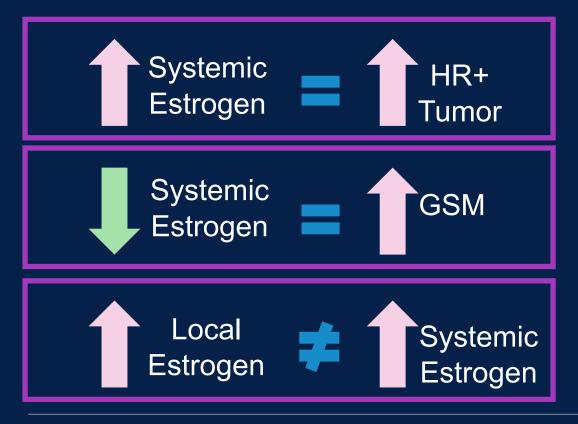
Topical Estrogen Can Be Safe for Survivors

2.

NCCN

ACOG The American College of Obstetricians and Gynecologists

National Comprehensive Cancer Network®


- Non-hormonal treatment is first line treatment
- Hormonal-based treatments are an option for many breast cancer survivors

Let's talk about GSM

GSM in Cancer Survivors

Dugan CL, Othieno AA, Goldman ME. Genitourinary Syndrome of Menopause in Cancer Survivors. Clinical Obstetrics Gynecology 2024 Mar 1;67(1):89-100. doi: 10.1097/GRF.0000000000000848. Epub 2023 Dec 18. PMID: 38108399.

Is pCR Enough to Limit Systemic Therapy: Pro

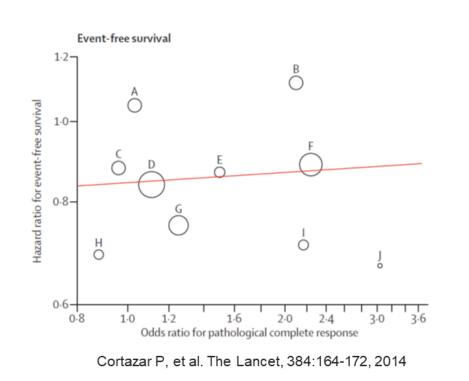
Rita Nanda, M.D. Director, Breast Oncology Program Associate Professor of Medicine

RISE UP for Breast Cancer November 1, 2024 San Francisco, CA

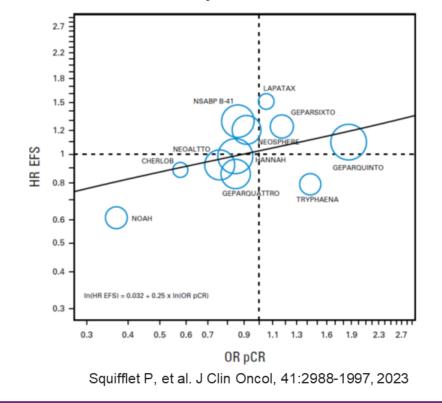
Disclosures

<u>Advisory Board</u>: AstraZeneca, Daiichi Sankyo, Exact Sciences, GE, Gilead, Guardant Health, Merck, Moderna, Novartis, OBI, Pfizer, Sanofi, Seagen, Stemline, Summit Therapeutics

<u>Research Funding</u>: Arvinas, AstraZeneca, BMS, Corcept Therapeutics, Genentech/Roche, Gilead, GSK, Merck, Novartis, OBI Pharma, OncoSec, Pfizer, Relay, Seattle Genetics, Sun Pharma, Taiho

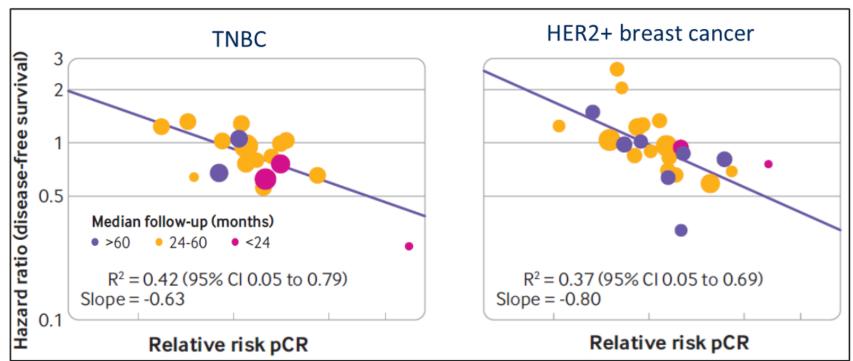

<u>CME Speaker</u>: SITC/Medscape, Research to Practice, Prime Education, OncLive, Clinical Care Options, Creative Education Concepts

Role of pCR in Breast Cancer


- pCR is defined as the absence of invasive cancer in the breast and axilla after neoadjuvant therapy (ypT0/Tis ypN0)
- pCR has been investigated at the trial level
 - Correlates with EFS/DFS/OS
 - Surrogate endpoint for FDA accelerated approval of novel agents
- pCR has been investigated at the patient level
 - Prognostic-correlates with improvement in longterm outcomes
 - Tailor therapy—is pCR enough to limit systemic therapy?

Inconsistent Correlation Between pCR and EFS in EBC

- Trial level meta-analysis of small underpowered studies show weak correlation between two statistical metrics, Odds Ratio for pCR and Hazard rate for EFS
- Meta-analysis of individually underpowered trials does not increase the level of evidence



Pooled analysis of HER2+ trials

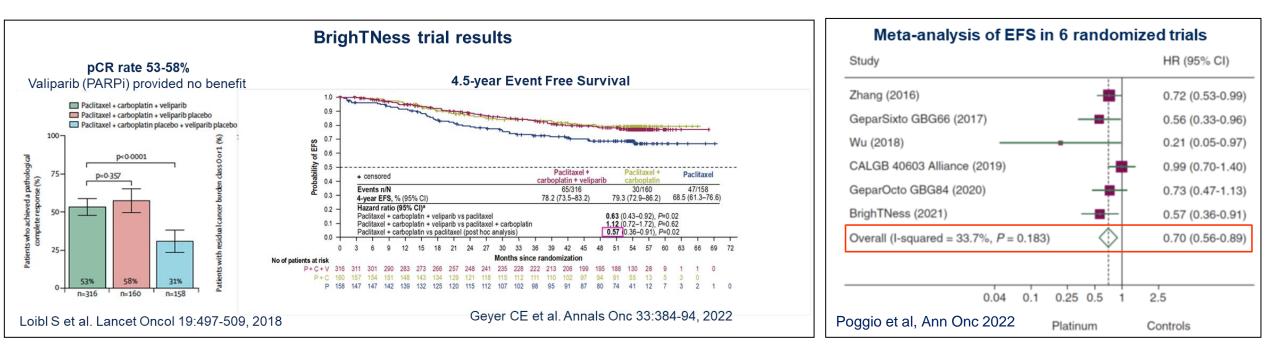
Limitations of Neoadjuvant Trials

- Goal of neoadjuvant studies is to rapidly identify promising systemic therapies using pCR as an endpoint-as such most are underpowered for longterm outcomes
- Despite being underpowered, some trials/meta-analyses do demonstrate an improvement in DFS

Correlation between pCR and DFS in TNBC and HER2+ breast cancer

Conforti F. et al. Br Med J 2021 Dec 21;375

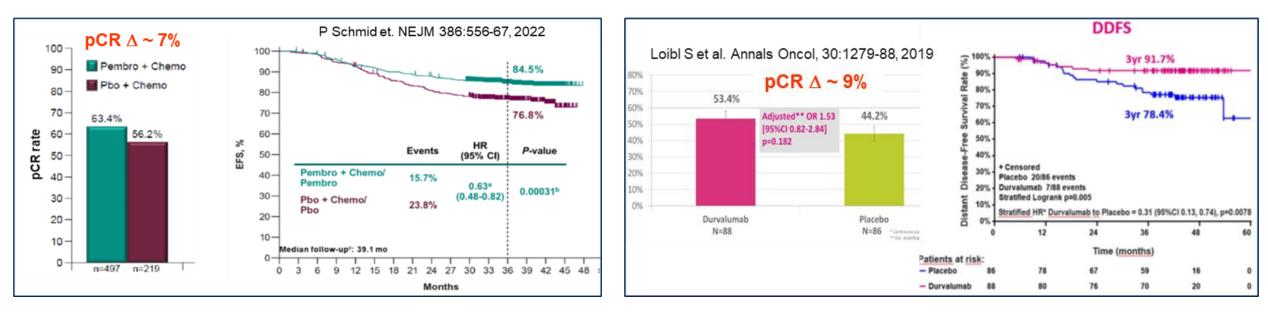
Impact of pCR on EFS in Neoadjuvant Trial in TNBC


BrighTNess ¹⁷	III	$\begin{array}{l} PTX \to AC \\ PTX+Cb \to AC \\ PTX+Cb+Vel \to AC \end{array}$	pCR	31 vs 58 vs 53 P=.0001 (PTX+Cb +Vel vs PTX)	4-y EFS, 68.5% vs 79.3% vs 78.2% HR, 0.63 (PTX+Cb+Vel vs PTX) HR, 1.12 (PTX+Cb+Vel vs PTX+Cb HR, 0.57 (PTX+Cb vs PTX)	Showed the translation of platinum-related pCR Improvement into long-term clinically meaningful benefit
CALGB 40603 ¹¹	II	$\begin{array}{l} PTX \rightarrow AC \\ PTX+Bev \rightarrow AC+Bev \\ PTX+Cb \rightarrow AC \\ PTX+Cb+Bev \rightarrow \\ AC+Bev \end{array}$	pCR	39 vs 43 vs 49 vs 60 P=.0029 (with Cb vs without Cb) P=.057 (with Bev vs without Bev)	5-y EFS: HR, 0.99 (95% Cl, 0.70–1.40) (with Cb vs without Cb) HR, 0.91 (95% Cl, 0.64–1.29) (with Bev vs without Bev)	Showed platinum agents improve pCR rate, did not demonstrate improvement in EFS with platinum
GeparSixto ^{13,1} 0	Ш	$\begin{array}{l} PTX+npLD+Bev \rightarrow \\ EC \\ PTX+npLD+Bev+Cb \\ \rightarrow EC \end{array}$	pCR	36.9 vs 53.2 P=.005	3-y DFS, 76.8% vs 86.1% HR, 0.56 (95% CI, 0.34–0.93)	Showed platinum agents improve pCR rate and demonstrated improvement in EFS with platinum
NeoSTOP ⁴⁰	II	$\begin{array}{l} PTX+Cb \rightarrow AC \\ DXP+Cb \end{array}$	pCR	54 vs 54		Showed clinically meaningful pCR results with anthracycline-free regimen for TN patients
KEYNOTE-522 ⁷ ,30	III	PTX+Cb+Pla → AC/EC+Pla PTX+Cb+Pembro → AC/EC+Pembro * Adjuvant Pembro/Pla	pCR and EFS	55.6 vs 63	3-y EFS, 76.8% vs 84.5% HR, 0.63 (95% Cl, 0.48–0.82)	Established the role of immunotherapy in the neoadjuvant/adjuvant treatment paradigm of TN patients Innovative coprimary endpoints design
IMpassion031 ²⁷	Ш	nab-PTX +Pla → AC+Pla nab-PTX+Atezo → AC+Aetzo * Adjuvant Atezo/Pla	pCR in ITT and pCR in PD-L1+	41 vs 58 P=.004	EFS, HR, 0.76 (95% CI, 0.4–1.44)	Demonstrated pCR improvement with the addition of immunotherapy to NACT
GeparNuevo ^{28,1}	II	nab-PTX+Pla → AC+Pla nab-PTX+Durva → AC+Durva	pCR	44.2 vs 53.4 P=.29	3-y IDFS, 76.9% vs 84.9% HR, 0.48 (95% CI, 0.24–0.97)	Evaluated the role of immune-system priming with a 'window' phase Demonstrated long-term benefit from neoadjuvant ICI without the administration of postsurgery immunotherapy

Spring et al, JNCCN 2022

Improvement in pCR associated with trial level improvement in EFS when trials <u>powered appropriately</u>

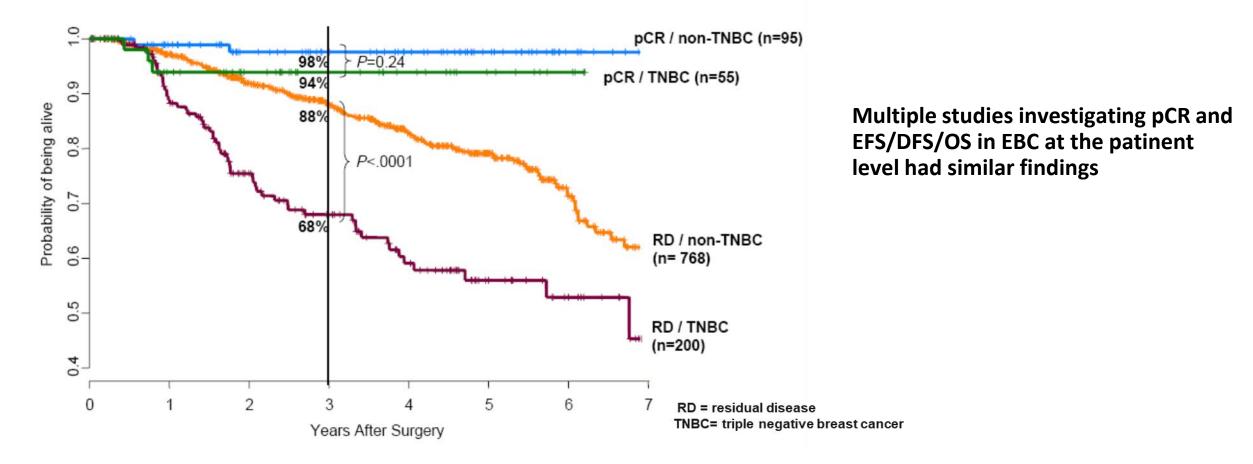
- T->AC: pCR ~30-40%
- T+carbo->AC: pCR ~50-55%
- T+carbo+pembro->AC+pembro: pCR ~64%


The Addition of Carboplatin to Paclitaxel Followed by AC Improves pCR and EFS in TNBC

Addition of Immunotherapy to NACT Improves pCR and Long-term Outcomes in KN-522 and GeparNuevo

KEYNOTE-522

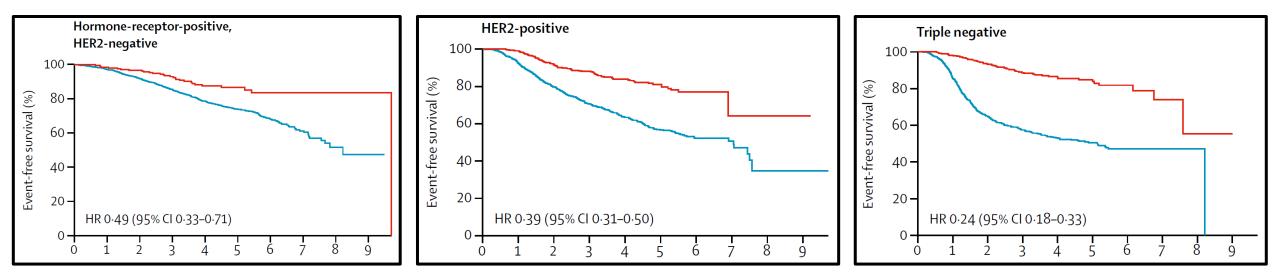
GeparNuevo



Significant improvement in pCR, EFS, and OS

Significant improvement in pCR and EFS without adjuvant IO

pCR is a Predictor of Long-term Survival in EBC


MD Anderson neoadjuvant trial results pooled survival analysis pathologic response and receptor status (N=1118)

Liedtke et al, JCO 2008

Association Between pCR and EFS by Breast Cancer Subtype

- 12 international neoadjuvant trials (>200 pts/trial)
- 11,955 patients total
- Regardless of subtype, strong correlation between pCR and EFS-strongest in TNBC and HER2+

Cortazar et al, Lancet 2014

Summary

- Robust patient-level data demonstrating that pCR associated with improved long-term outcomes
- Appropriately powered trials have also demonstrated significant correlation b/w pCR and EFS/DDFS (even OS!) at the trial level
- Lack of pCR is not necessarily associated with poor long-term outcome
 - Adjuvant therapy affects outcome: T-DM1, capecitabine, ?immunotherapy
 - ctDNA clearance, reduction in RCB
- Is pCR enough to limit systemic therapy? YES

ThankYou! <u>RNANDA@bsd.uchicago.edu</u> @RitaNandaMD

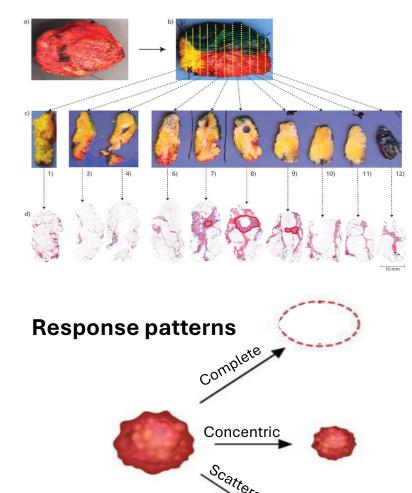
Special thank you to Lajos Pusztai, M.D., D.Phil

Is pCR enough to limit systemic therapy: NO

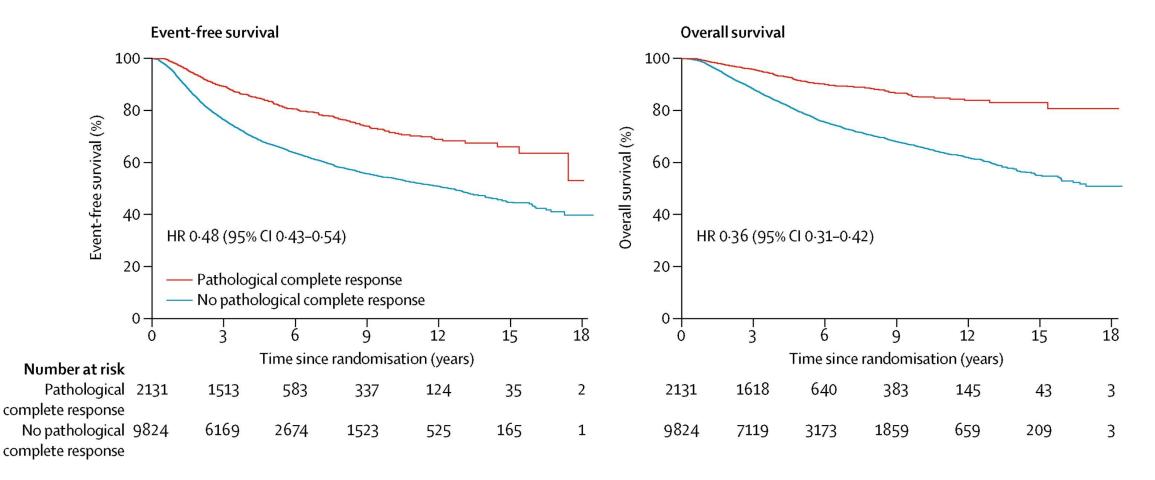
Cesar A. Santa-Maria, MD MSCI

Associate Professor of Oncology Breast and Gynecological Malignancies Group Sidney Kimmel Comprehensive Cancer Center Johns Hopkins Medicine

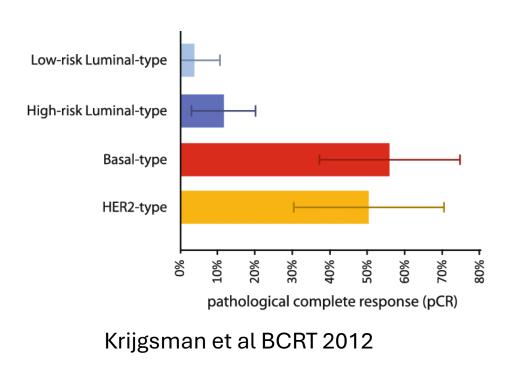
Argument overview

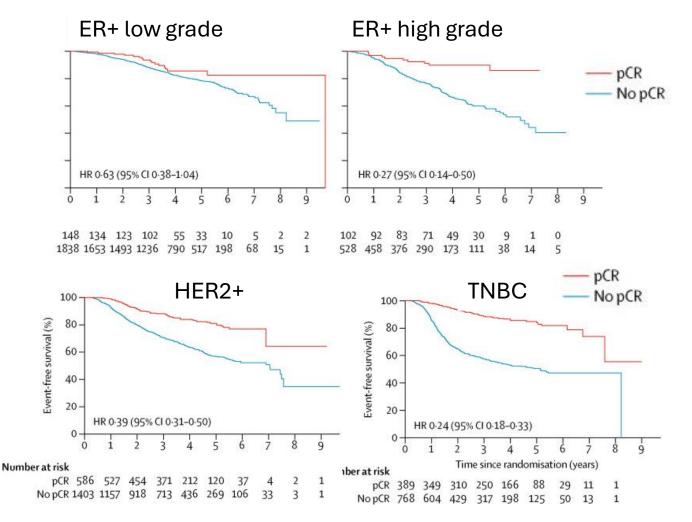

For pCR to limit systemic therapy it must:

- Be robust and reproducible
- Reliably predict patient outcomes
- Predict lack of benefit to adjuvant systemic therapy

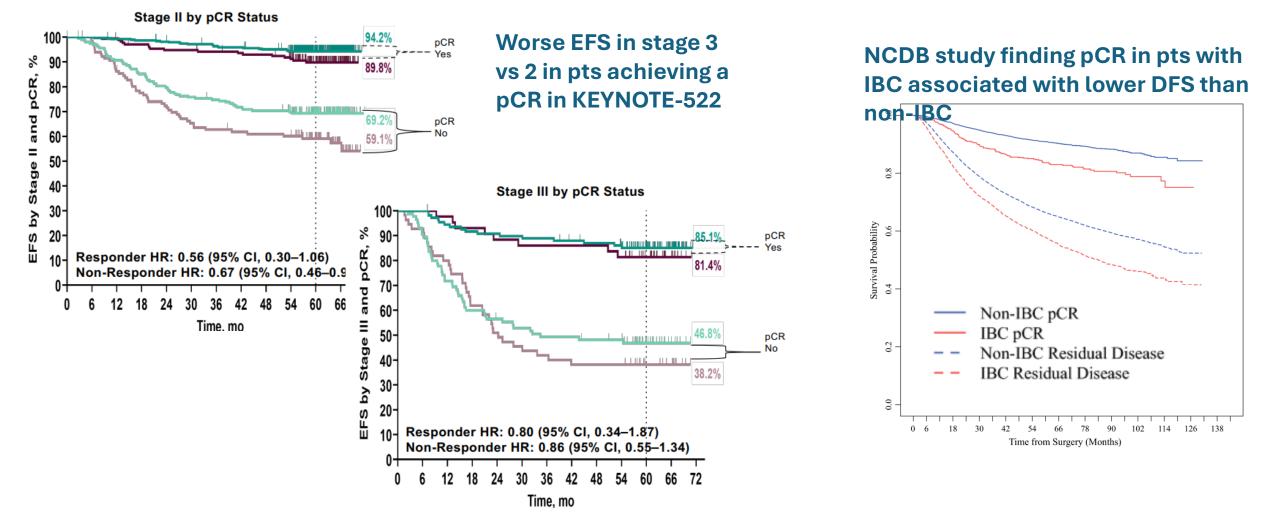

Technical limitations in pCR assessment

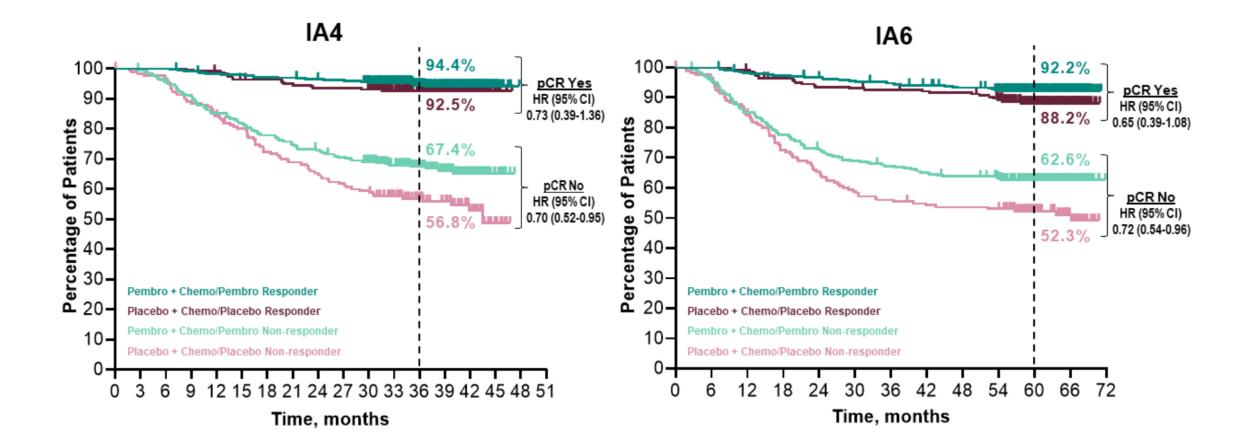
- pCR is the gold standard in assessing response to neoadjuvant therapy
- Technical/path factors:
 - Processing lacks standardization (ie routine grossing procedures, tumor bed sectioning/sampling)
 - Sectioning may miss a small focus of invasive disease
 - Particularly a potential issue in larger tumors
 - Response pattern after neoadjuvant therapy can vary
 - Centralized assessment can result in some discordance


Han et al Arch Pathol Lab Med 2020; Huang et al Front Bioeng Biotechnol 2021



Patients achieving pCR have a better prognosis than those who do not: but not a perfect relationship

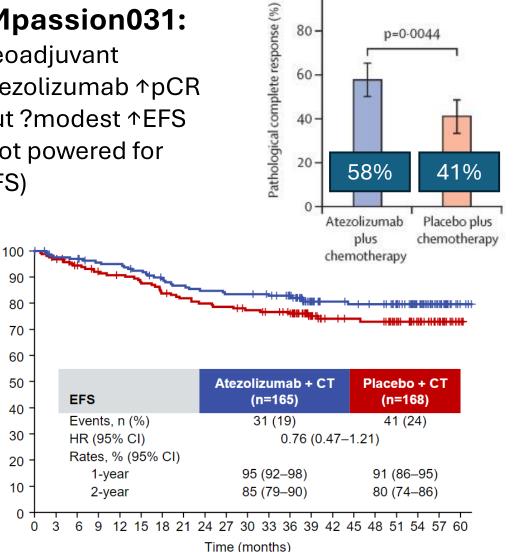

pCR rate to chemotherapy varies by subtype, pCR relationship with survival does as well


Cortazar et al Lancet 2014

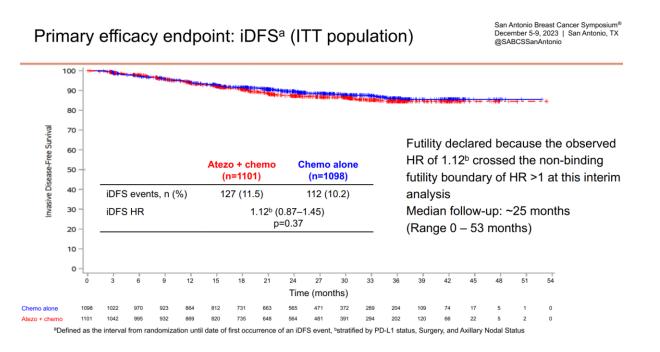
Baseline clinical stage matters, pts with higher stage have higher rates of recurrence post-pCR

Schmid et al SABCS 2023, Parrish et al Breast Oncology 2024, Huober et al npj breast cancer 2023

Does the path to pCR matter?



Does neoadjuvant administration matter?


neoadjuvant atezolizumab ↑pCR but?modest ↑FFS (not powered for EFS)

Estimated EFS (%)

100

IMpassion030: adjuvant atezolizumab does not improve iDFS

Mittendorf et al Lancet 2020; Barrios et al ESMO 2023; Ignatiadis et al SABCS 2023

Can we use pCR to limit systemic therapy?

Maybe, but still a research question! Not ready for routine practice!

TNBC

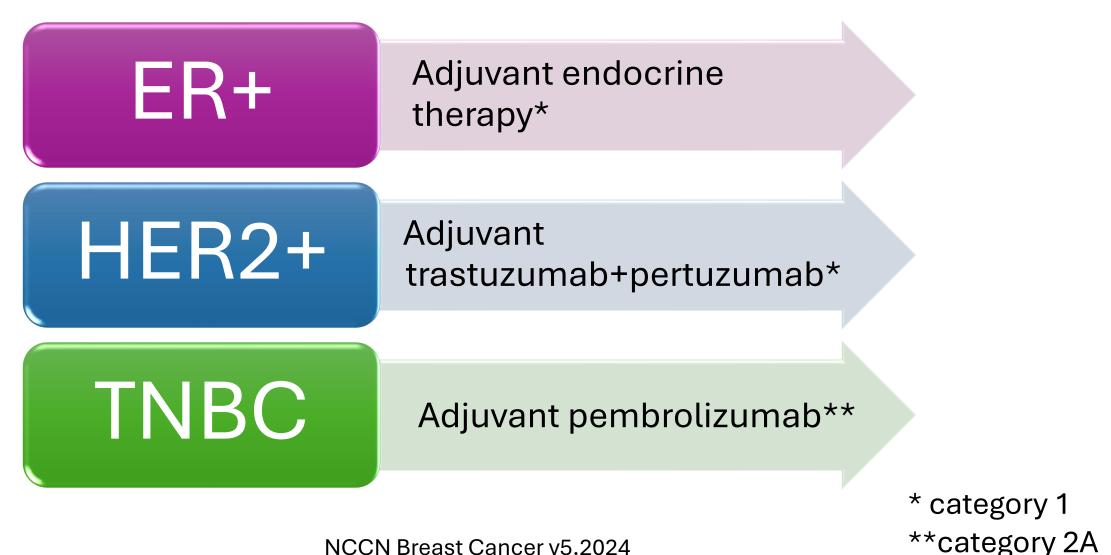
• SWOG 2212 (SCARLET)

KN522 vs Doce/carbo/pembro x6
 → if pCR no further chemo (but pembro still given)

OPTIMICE-pCR

• Post-pCR pembrolizumab vs obs

HER2-positive


PHERGAIN

 Modular adapted therapy using early PET changes, allowing patients achieving pCR on HP to continue without chemo (95% 3yr iDFS)

• COMPASS-pCR

 THP x4 → no further chemo if pCR (but HP continued)

Standard of care adjuvant therapy post-pCR

NCCN Breast Cancer v5.2024

Refining associations between pathological response and outcomes

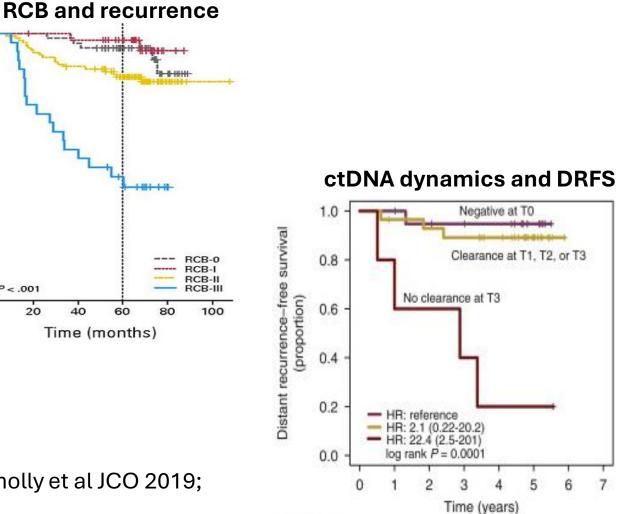
1.0

0.8

0.6

0.4

0.2


P < .001

20

40

Proportion Free of Distant Relapse

- pCR is binary, extent of residual disease can affect outcomes \rightarrow ie RCB index can further quantify
- Early PET changes associated with pCR (lack of SUV has high NPV for pCR and RFS)
- Lack of ctDNA clearance associated with RD and lower DRFS Fraser et al JCO 2007; Thomas et al Mod Pathol 2017; Connolly et al JCO 2019; Magbanua et al Ann of Oncol 2021

Conclusions

- **1. Is pCR assessment robust and reproducible?** Its our gold standard, but has technical limitations
- **2. Does pCR reliably predict patient outcomes?** pCR is prognostic in proliferative breast cancers, but associations with survival are not perfect
- **3. Does pCR predict lack of benefit to adjuvant systemic therapy?** We do not know yet, current guidelines still recommend adjuvant therapy post-pCR

Should pCR limit adjuvant systemic therapy? NO! At this time, pCR should not be used routinely to limit systemic therapy outside of a clinical trial

pCR is not a final endpoint of therapy, rather an important prognostic marker, not <u>yet</u> predictive of benefit to adjuvant therapy

Thank you!

Comprehensive Cancer Center

Is pCR Enough?

Hope S. Rugo, MD

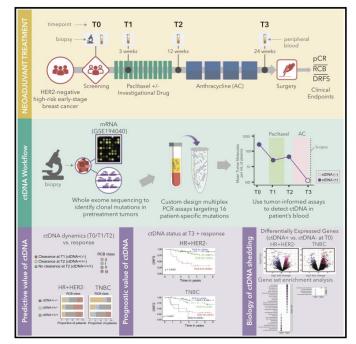
Professor of Medicine and Winterhof Family Distinguished Professor of Breast Oncology

Director, Breast Oncology and Clinical Trials Education

University of California San Francisco Comprehensive Cancer Center

For pCR to be enough.....

- Trials prior to IO studies were not powered to look at EFS
 - Current standards include powering neoadjuvant trials for EFS (~300 pts vs 1200-1500)
- Does pCR need to preduct benefit from post neoadjuvant therapy
 - Not always: for HR+ disease the benefit includes primary prevention, reducing local recurrence
- Based on KN522
 - The path to pCR did not impact survival
 - This suggests that post neoadjuvant therapy can indeed be moderated by response at surgery
- Is it a robust enough marker
 - Yes when following careful pathology guidelines
 - Use of RCB improves the robustness of pCR as a marker
- Additional biomarkers
 - ctDNA in patients with pCR


ctDNA (early) clearance during NAC predicts response ctDNA non-clearance after NAC predicts early recurrence Exploratory Biomarker – ctDNA in plasma

Article

Cancer Cell

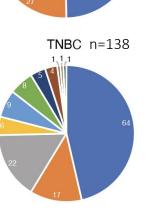
Clinical significance and biology of circulating tumor DNA in high-risk early-stage HER2-negative breast cancer receiving neoadjuvant chemotherapy

Graphical abstract

Authors

Mark Jesus M. Magbanua, Lamorna Brown Swigart, Ziad Ahmed, ..., Angela M. DeMichele, Hope S. Rugo, Laura J. van 't Veer

Correspondence

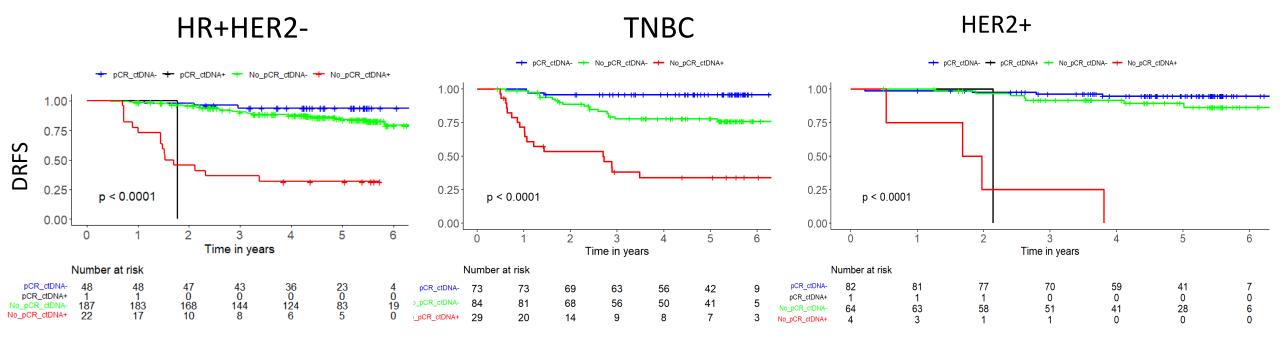

mark.magbanua@ucsf.edu

In brief

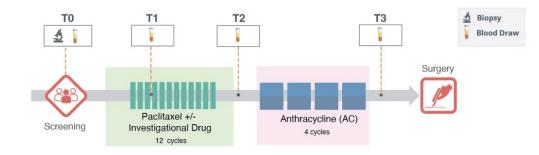
Magbanua et al. examine the dynamics of ctDNA in plasma of high-risk early-stage breast cancer patients receiving neoadjuvant chemotherapy. Understanding the predictive and prognostic value of ctDNA and biology of ctDNA shedding in different breast cancer subtypes can inform the use of ctDNA for treatment selection to improve patient outcomes. Circulating Tumor DNA (exploratory biomarker): Personalized 16 tumor mutated specific fragments Serial liquid biopsies: 283 pts various treatment arms

27 27

HR+HER2- n=145

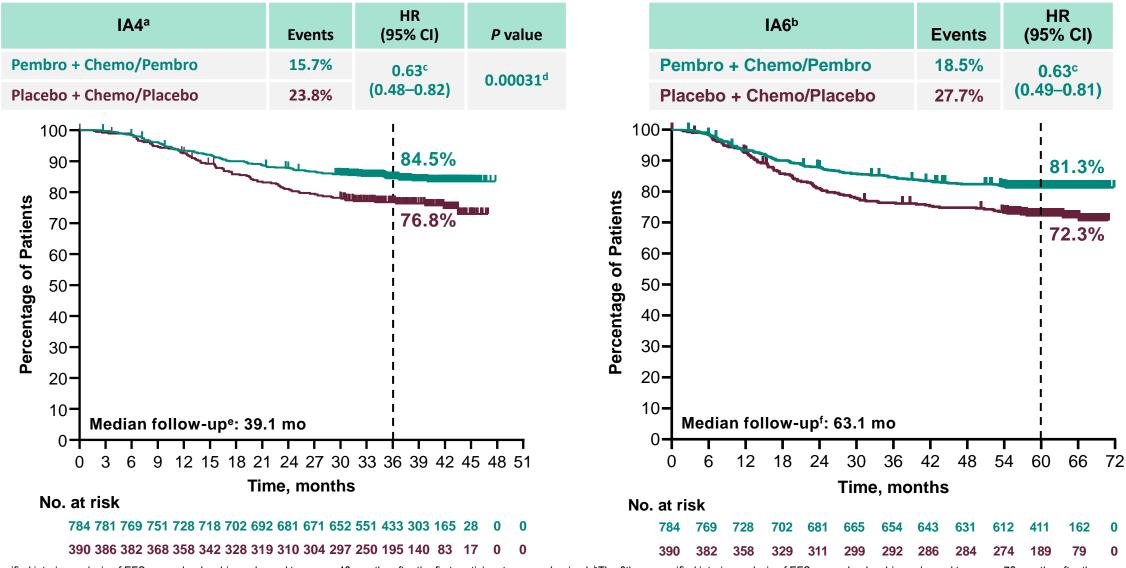

Compiled Series by Subtype

- Paclitaxel
 - Paclitaxel + Pembrolizumab
 - = Paclitaxel + MK-2206
 - Paclitaxel + Ganitumab
 - Irinotecan + Talazoparib
 - Paclitaxel + Ganetespib
 - Paclitaxel + AMG 386
 - Paclitaxel + Pembrolizumab 8-Cycle
 - = Paclitaxel + ABT 888 + Carboplatin
 - Paclitaxel + Neratinib
 - SGN-LIV1A

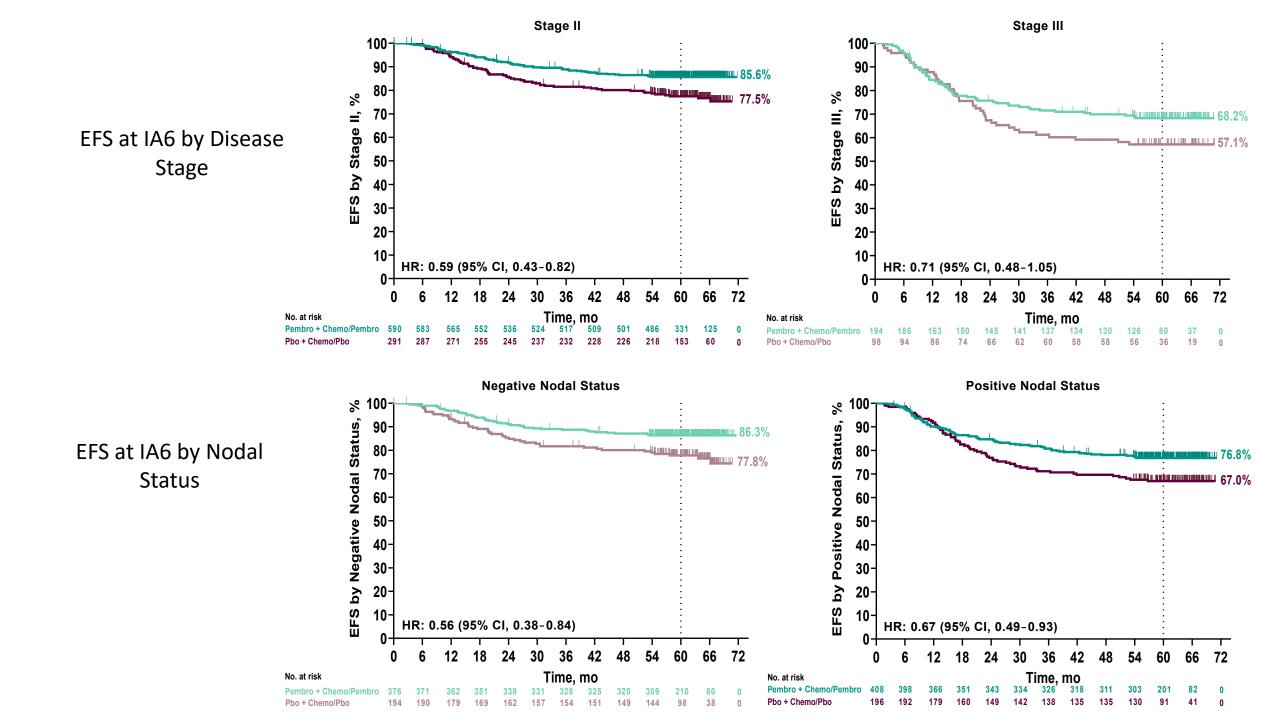

Mark Magbanua

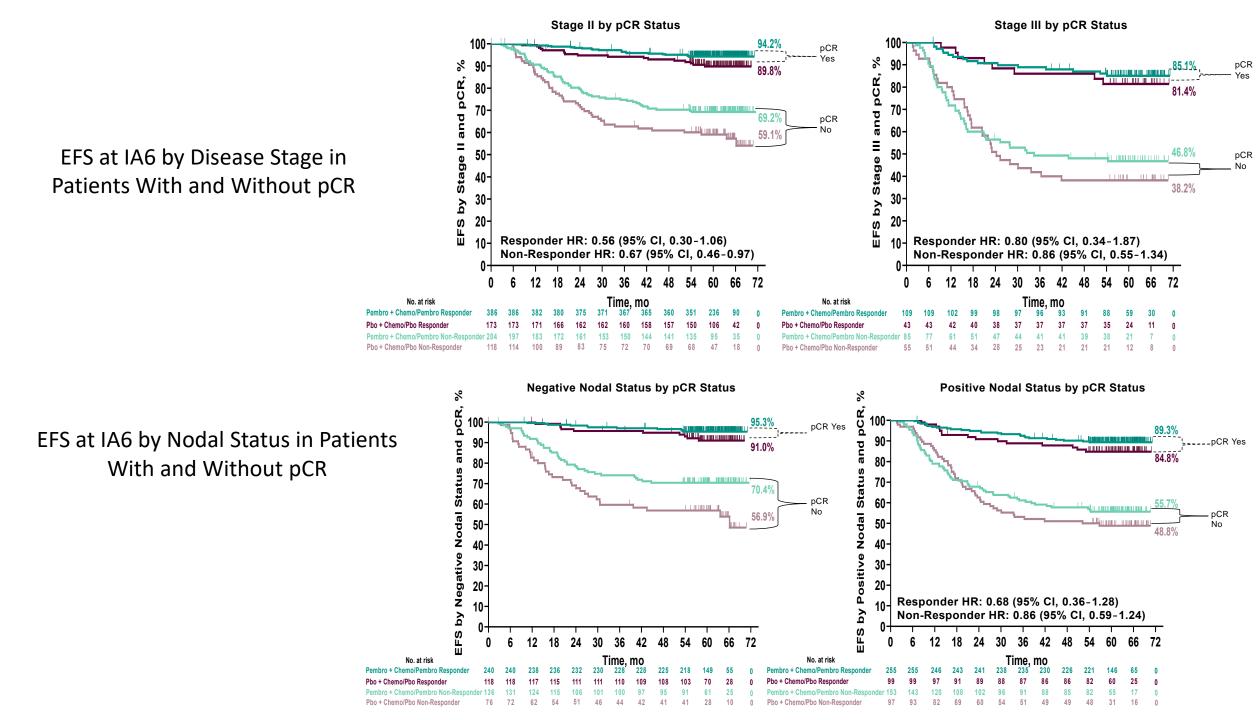
ctDNA non-clearance at surgery predicts recurrence

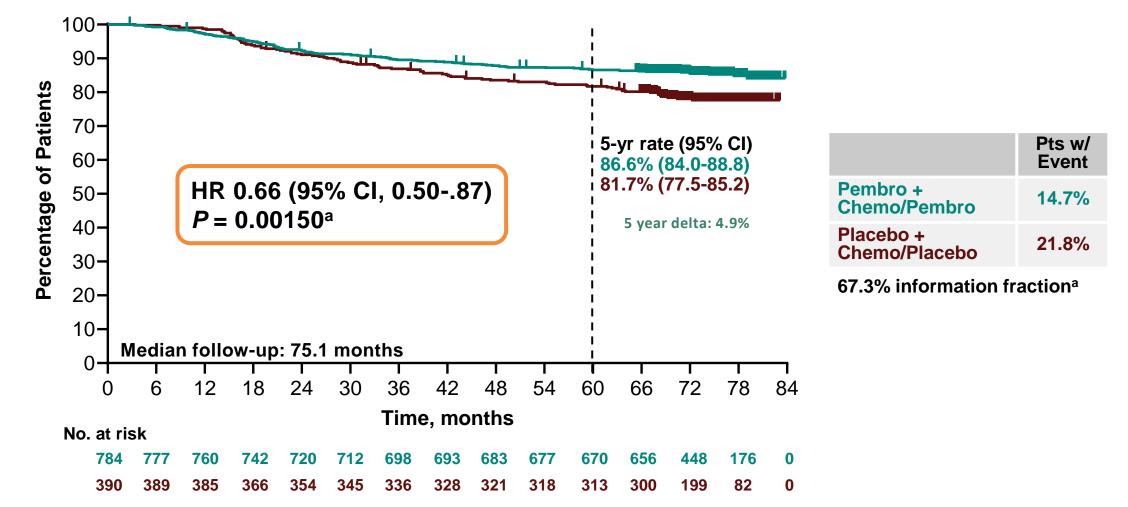
pCR ctDNApCR ctDNA+ No pCR ctDNA-No pCR ctDNA+


T3 = post-neoadjuvant treatment/pre-surgery

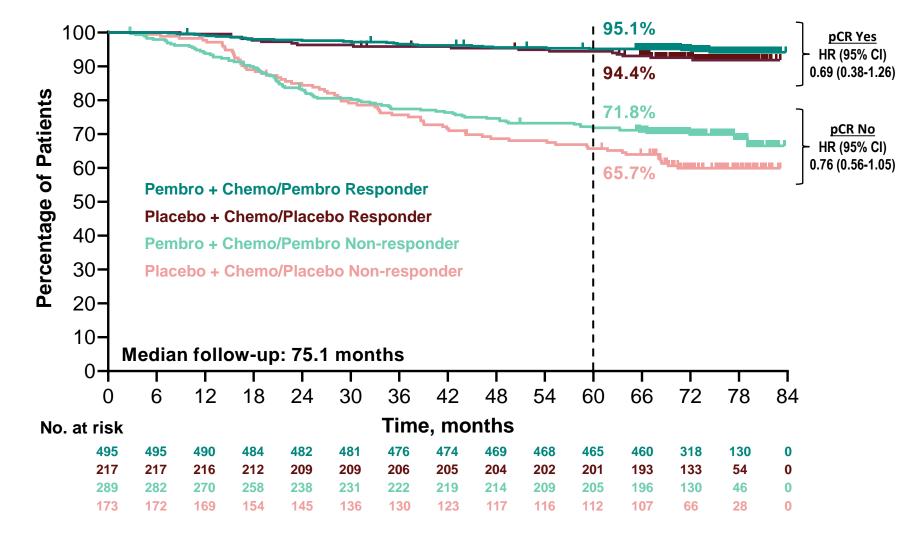
Implications for Adjuvant Therapy


Magbanua et al, Cancer Cell, 2023 https://doi.org/10.1016/j.ccell.2023.04.008


KN522: EFS at IA4 and IA6: median FU 63.1 mo


^aThe 4th prespecified interim analysis of EFS was calendar-driven planned to occur ~48 months after the first participant was randomized. ^bThe 6th prespecified interim analysis of EFS was calendar-driven planned to occur ~72 months after the first participant was randomized. ^cHazard ratio (CI) analyzed based on a Cox regression model with treatment as a covariate stratified by the randomization stratification factors. ^dPrespecified *P*-value boundary of 0.00517 was crossed. ^eDefined as the time from randomization to the data cutoff date of March 23, 2021. ^fDefined as the time from randomization to the data cutoff date of March 23, 2023.

Schmid et al, SABCS 2023


Key Secondary Endpoint: Overall Survival

^aWith 200 events (67.3% information fraction), the observed *P*-value crossed the prespecified nominal boundary of 0.00503 (1-sided) at this interim analysis. Overall, 86/115 (74.8%) deaths in the pembro group and 62/85 (72.9%) deaths in the placebo group were due to disease progression or recurrence. The unstratified piecewise HR was 0.87 before the 2-year follow-up and 0.51 afterwards. The weighted average HR with weights of number of events before and after 2-year follow-up was 0.66. Data cutoff date: March 22, 2024.

Schmid et al, ESMO 2024

Overall Survival by Pathologic Complete Response (yp T0/Tis ypN0)

This is a non-randomized subgroup analysis based on the post-treatment outcome of pCR and HRs should therefore be interpreted with caution. Data cutoff date: March 22, 2024.

Schmid et al, ESMO 2024

So....is pCR enough?

- Yes
 - For the individual patient
 - In well powered trials
 - For chemotherapy sensitive disease

Thank you!